

REPORT

Preliminary Noise and Vibration Feasibility Study

Proposed Residential Development - Niagara Village, 6000 Marineland Parkway, Niagara Falls, Ontario

Submitted to:

Invest Group

Mr. Sinan Saltaji 4308 Village Court Mississauga, On

Submitted by:

Golder Associates Ltd.

6925 Century Avenue, Suite #100 Mississauga, Ontario, L5N 7K2 Canada

+1 905 567 4444

1784521

March 2020

Distribution List

1 e-copy: Golder Associates Ltd.

1 e-copy: GSP Group Inc.

1 e-copy: Invest Group

Table of Contents

1.0	INTR	DDUCTION	1
2.0	BAC	GROUND	3
3.0	APPL	ICABLE REGULATIONS AND GUIDELINES	4
	3.1	D-Series Guidelines	4
	3.1.1	Guideline D-1 – Land Use Compatibility	4
	3.1.1.1	Application and Guideline	4
	3.1.2	Guideline D-6 Compatibility between Industrial Facilities and Sensitive Land Uses	6
	3.2	Ontario Environmental Protection Act and Environmental Compliance Approvals	7
	3.3	Noise Guidelines	8
	3.3.1	Environmental Noise Guideline Stationary and Transportation Sources – Approval and Planning Publication NPC-300	8
	3.3.2	City of Niagara Falls Noise and/or Vibration By-Law	14
	3.4	Vibration Guidelines	15
4.0	EXIS	TING CONDITIONS REVIEW	18
	4.1	Document Review	18
	4.1.1	Arcadis Report	19
	4.1.2	UEM Report	19
	4.1.3	RWDI Report	20
	4.1.4	UEM Constraints Analysis	20
	4.1.5	Burnside Transportation Study	20
	4.2	Existing Environmental Compliance Approvals	20
	4.3	City of Niagara Resources	23
	4.3.1	City of Niagara Zoning By-Law Number 79-200	23
	4.3.2	City of Niagara Open Data Portal	24
	4.4	CP Montrose Subdivision Rail Line	24
	4.5	Aircraft Noise	24
	4.6	Noise Data from Surrounding Industrial Facilities	25
	4.7	Field Reconnaissance Survey	25

	4.8	Summary of Noise and Vibration Emission Sources for Further Assessment	26
	4.8.1	Noise	26
	4.8.2	Vibration	29
5.0	NOIS	E ASSESSMENT	30
	5.1	Impact of the Environment on the Project	
	5.1.1	Field Program	
	5.1.1.1	Key Industrial Facilities Assessed	
	5.1.1.2	Noise Measurements	33
	5.1.2	Assessment Methodology	34
	5.1.3	Industrial Facilities - Stationary Noise Sources	36
	5.1.3.1	Methodology	
	5.1.3.2	Results	
	5.1.3.3	Discussion and Noise Mitigation	
	5.1.4	Transportation Sources	41
	5.1.4.1	Methodology	41
	5.1.4.2	Results	44
	5.2	Impact of the Project on the Environment	46
	5.2.1	Criteria	46
	5.2.1.1	Stationary Sources	46
	5.2.1.2	Traffic Noise	46
	5.2.2	Assessment	47
	5.2.2.1	Stationary Noise Source	47
	5.2.2.2	Road Traffic Noise	47
	5.3	Impact of the Project on Itself	47
6.0	VIBR	ATION	49
	6.1	Assessment Methodology	49
	6.2	Results	49
7.0	CON	CLUSIONS AND RECOMMENDATIONS	51
8.0	REFE	RENCES	56

TABLES

Table 1: Summary of MECP Identified Areas of Influence and Recommended Separation Distances
Table 2: Stationary Sources (Steady and Varying Sounds) - Exclusionary Sound Level Limit Values of One- Hour Equivalent Sound Level (Leq, dBA) POW of Noise Sensitive Spaces
Table 3: Stationary Sources (Steady and Varying Sounds) - Exclusionary Sound Level Limit Values of One- Hour Equivalent Sound Level (Leq, dBA) Outdoor POR10
Table 4: Stationary Sources (Impulsive Sounds) - Exclusionary Sound Level Limit Values of Logarithmic Mean Impulse Sound Level (LLM, dBAI) POW of Noise Sensitive Spaces
Table 5: Stationary Sources (Impulsive Sounds) - Exclusionary Sound Level Limit Values of Logarithmic Mean Impulse Sound Level (LLM, dBAI) Outdoor POR
Table 6: Road and Rail Noise Ventilation Requirements 12
Table 7: Outdoor Living Area Noise Control Requirements 13
Table 8: Indoor Sound Level Limits for Road and Rail Traffic Noise 13
Table 9: Summary of MECP ECA and EASR Search
Table 10: Industrial Facilities to be Further Assessed
Table 11: Key Industrial Facilities to be Assessed
Table 12: Conceptual Built Form Building Height Summary 36
Table 13: Summary of Existing and Future Road Traffic Data
Table 14: Summary of Rail Traffic Data44
Table 15: Transportation Noise Assessment Results Summary 44

FIGURES

- Figure 1 Site Location
- Figure 2 Existing Land Use
- Figure 3 Existing Site Layout Plan
- Figure 4 Proposed Development Site Layout Plan
- Figure 5 Noise and Vibration Measurement Locations
- Figure 6 Project Site Proposed Classification Areas
- Figure 7 Maximum Noise Levels Resulting from Most Significant Industrial Facilities @ 1.5m
- Figure 8 Maximum Noise Levels Resulting from Most Significant Industrial Facilities @ 4.5
- Figure 9 Maximum Noise Levels Resulting from Most Significant Industrial Facilities @ 7.5
- Figure 10 Maximum Noise Levels Resulting from Most Significant Industrial Facilities @ 10.5
- Figure 11 Maximum Noise Levels Resulting from Most Significant Industrial Facilities Salit Steel Meeting Class 2 @ 4.5m

Figure 12 - Road and Rail Daytime Noise Levels @ 1.5 m

Figure 13 – Road and Rail Nighttime Noise Levels @ 1.5 m

APPENDICES

APPENDIX A Existing Conditions Documents

APPENDIX B Noise Monitoring Program

APPENDIX C Road Noise Prediction Modelling Verification

APPENDIX D Noise Prediction Modelling Input Data

APPENDIX E Sample Calculations

IMPORTANT INFORMATION AND LIMITATION OF THIS REPORT

Standard of Care:

Golder Associates Ltd. (Golder) has prepared this report in a manner consistent with that level of care and skill ordinarily exercised by members of the engineering and science professions currently practicing under similar conditions in the jurisdiction in which the services are provided, subject to the time limits and physical constraints applicable to this report. No warranty, expressed or implied, is made.

Basis and Use of this Report:

This report represents Golder's professional opinion based on: (a) the knowledge and information available at the time of preparation; (b) information and data supplied by outside sources; and (c) the conditions, qualifications and assumptions set forth in the report. This report is written solely for the purpose stated in Golder's contract with the Client, and for the sole and exclusive benefit of the Client, whose remedies are limited to those set out in its contract with Golder. This report, including all text, data, tables, plans, figures, drawings and other documents contained herein, has been prepared by Golder for the sole benefit of the Client and may not be used or relied upon by any others, without express written permission from Golder.

Unless expressly stated otherwise in the report, assumptions, data and information supplied by, or gathered from other sources (including the Client, other consultants, testing laboratories, governmental sources or equipment suppliers, etc.) upon which Golder's opinion as set out herein is based, have not been verified by Golder and may be inaccurate or incomplete. The factual data, interpretations, suggestions, recommendations and opinions expressed in this report pertain to the specific project, site conditions, design objective, development and purpose set out in the report, and are not applicable to any other project or site location.

This document is meant to be read as a whole, and sections or parts thereof should thus not be read out of context or relied upon without Golder's prior express written permission. In order to properly understand the factual data, interpretations, suggestions, recommendations and opinions expressed in this report, reference must be made to the entire report.

Except as required by law, this report and the information and data contained herein are to be treated as confidential and may be used and relied upon only by the Client, its officers, directors, employees and those parties who has been expressly authorized to do so by Golder in writing, subject at all times to the terms and conditions of Golder's contract with Client.

Golder is not responsible for any unauthorized use or modification of this report. No third parties may rely on this report. Golder disclaims any liability to the Client and to third parties in respect of the publication, reference, quoting, or distribution of this report or any of its contents to and reliance thereon by any third party. Therefore, any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Golder accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

1784521

Copyright:

This report, including all text, data, tables, plans, figures, drawings and other documents contained herein, as well as all electronic media prepared by Golder are considered its professional work product and shall remain the copyright property of Golder. Client may make copies of the report in such quantities as are reasonably necessary for those parties conducting business specifically related to the subject of this report or in support of or in response to regulatory inquiries and proceedings. Electronic media is susceptible to unauthorized modification, deterioration and incompatibility and therefore no party can rely solely on the electronic media versions of this document.

1.0 INTRODUCTION

Golder Associates Ltd. (Golder) was retained by Invest Group (the Client) to carry out a Preliminary Noise and Vibration Feasibility Study (the Study) for the proposed Niagara Village residential development (the Project) located at the existing Thundering Waters Golf Course (the Site) at 6000 Marineland Parkway, City of Niagara Falls (the City), Ontario. The Project Site is currently used for the purposes of a golf course surrounded by various land uses including industrial, commercial, residential and tourism. A road network surrounds the Project Site and an active rail line passes through the Site. Figure 1 shows the site location and the Study Area extending 1 km from the Project Site boundary. The Project is currently in the planning stage and the purpose of this Study is to support the official plan and zoning by-law amendments. This Study is multifaceted and considers the following:

- the potential impact of the environment on the Project;
- the potential impact of the Project on the environment; and
- the potential impact of the Project on itself.

The impact of the environment on the Project Site addresses the potential noise and vibration impact from existing stationary sources from nearby industrial facilities and transportation sources. Residential land-use is recognized as a sensitive land-use by the applicable Ontario Ministry of the Environment, Conservation and Parks (MECP) standards, and therefore possible land-use compatibility concerns may arise between sensitive land uses and other surrounding land uses containing industrial or transportation activities. These possible land use compatibility concerns include:

- Introducing compliance issues and limitations on expansion for adjacent industries, which could include potential increased mitigation requirements and could impact their operations.
- Limiting the enjoyment of outdoor living areas from elevated noise levels from transportation sources.
- Increased mitigation requirements on the proposed development.

To help prevent or minimize land use incompatibility between sensitive and industrial land uses, the MECP prepared a guidance document, considered in the industry for use as a screening tool, *Guideline D-6 Compatibility between Industrial Facilities and Sensitive Land Uses* (Guideline D6) which is often used to support the land use planning process for proposed future land uses. Guideline D6 considers potential influence areas and provides recommended minimum separation distances to minimize the potential conflict. Guideline D6 is a useful initial screening tool, but for more complicated sites the MECP recommends a more detailed noise assessment be completed in accordance with MECP *NPC-300 Environmental Noise Guideline – Stationary and Transportation Sources – Approval and Planning* (NPC-300). This Study will focus on the estimated influence areas on the noise sensitive land uses within the Project Site from surrounding industrial land uses using NPC-300. This will assist in better identifying potential conflicts that are likely to exist, allowing the Project team to design a more feasible Project and better develop and implement noise mitigation that is more effective. For assessing the potential impact of the environment on the Project, Golder considered the existing and future transportation corridors and existing industries in the vicinity of the Project Site. Based on available information, this Study considered only existing land uses and conditions within and surrounding the Project Site as identified by City datasets, information provided by the Project team and/or field campaigns carried out by Golder to support this Study. Noise data from industrial facilities surrounding the Project Site was formally requested and was received for limited industries. If any additional data is provided in the future, it may require this Study to be updated accordingly. Therefore, this Study primarily relied on information obtained from readily available public sources, field campaigns and/or Golder's experience on past projects to assess the operations of the nearby industrial facilities and transportation corridors.

The assessment of the potential impact of the Project on the environment considered the potential impact of stationary noise sources associated with the Project and the increased road traffic due to the Project onto offsite sensitive receptors.

The assessment of the potential impact of the Project onto itself considered the potential impact of stationary noise sources associated with the Project and the increased road traffic due to the Project onto onsite sensitive receptors.

To meet the objectives of this Study, the following was carried out:

- review of applicable regulations and guidelines;
- review of existing site conditions, including document review, desktop analysis and field reconnaissance;
- completion of a preliminary noise and vibration assessment; and
- development of recommendations based on the information presented in this Study.

2.0 BACKGROUND

The Project Site is located in the City near the intersection of Marineland Parkway and Stanley Avenue. It was developed in 2005, covers approximately 150 hectares and consists of three one-storey buildings (clubhouse, half-way house, and catering building), a maintenance facility area, four ponds, pathways and access roads, parking lots, and grassed and forested areas. The Canadian Pacific (CP) Montrose Subdivision, an industrial spur rail line, runs through the Project Site and it services the industrial facilities in the area.

The Project Site is currently within the City's Official Plan Special Policy Area 39 and designated as an "Open Space". The Project Site is subject to the City's Zoning By-Law Number 79-200 and is zoned "Open Space" with some areas designated with a holding provision "OS-H". The zoning provisions identified in these by-laws describe all the possible permitted land uses. The Project Site is adjacent to a range of land uses, including light, general, and heavy industrial and residential. The Project Site is not associated with the proposed Riverfront Community but is directly adjacent to it.

Figure 2 illustrates the current zoning in accordance with the City's By-law 79-200 at the time of this Study. Figure 3 identifies the Project Site and the surrounding area within 1 km of its boundary and also identifies existing industrial facilities considered in this Study.

The Client proposes to develop a residential subdivision within the Site, containing a mix of low and medium density areas, including a municipal road network and open and recreational spaces. Figure 4 shows the proposed development site layout plan provided by the Project team. According to the Regional Municipality of Niagara Falls, the land use planning authority for the Project is the City. This report identifies the mitigation measures that can be implemented on the Project Site to allow for the residential use to proceed despite its location in proximity to existing adjacent industrial properties. Over the years, several land use compatibility studies have been carried out for different developments surrounding the Project Site and at times have resulted in different conclusions. It is expected this Study will be used in future discussions with the City to review the feasibility of the Project with respect to noise and vibration, including deciding on the framework to be applied to support the land use planning process.

3.0 APPLICABLE REGULATIONS AND GUIDELINES

The first step in completing this Study was to confirm the applicable regulations and guidelines. The following is a high-level summary of each regulation or guideline applicable for this Study.

3.1 D-Series Guidelines

During the land use planning process for proposed future land uses, the MECP has recommendations described in a set of D-Series Guidelines developed in July 1995. The D-Series Guidelines are intended to assist in minimizing potential conflicts due to encroachment of sensitive land uses and industrial land uses on one another.

3.1.1 Guideline D-1 – Land Use Compatibility

3.1.1.1 Application and Guideline

The MECP's Guideline D-1 – Land Use Compatibility (Guideline D1) provides recommended separation distances and other control measures for land use planning proposals which have the potential to involve encroachment of incompatible land uses. These recommendations seek to prevent or minimize potential adverse effects for an existing or proposed facility and apply only when a change in land use is proposed (i.e., future proposals). This guideline does not apply to situations where incompatible land use already exists. Adverse effects considered under Guideline D1 may include:

- noise and vibration;
- visual impact;
- odour and other air emissions;
- litter, dust and other particulates; and
- other contaminants.

The MECP suggests buffers (e.g., separation distance, berms, walls, fences, building orientation) are to be used to minimize or prevent people, properties, plants or animals from being exposed to potential adverse effects caused by land use changes.

Guideline D1 is applicable in the following situations:

- "a new sensitive land use is proposed within the influence area or potential influence area of an existing facility"; and/or
- "a new facility is proposed where an existing sensitive land use would be within the facility's influence area or potential influence area."

A sensitive land use is defined as follows:

A building, 'amenity area' or outdoor space where routine or normal activities occurring at reasonably expected times would experience 1 or more 'adverse effect(s)' from contaminant discharges generated by a nearby 'facility'. The 'sensitive land use' may be a part of the natural or built environment. Depending upon the particular 'facility' involved, a sensitive land use and associated activities may include one or a combination of:

- 1) Residences or facilities where people sleep (e.g. single and multi-unit dwellings, nursing homes, hospitals, trailer parks, camping grounds, etc.). These uses are considered to be sensitive 24 hours/day.
- 2) A permanent structure for non-facility related use, particularly of an institutional nature (e.g. schools, churches, community centers, day care centers).
- 3) Certain outdoor recreational uses deemed by a municipality or other level of government to be sensitive (e.g. trailer park, picnic area, etc.).
- 4) Certain agricultural operations (e.g. cattle raising, mink farming, cash crops and orchards); and
- 5) Bird/wildlife habitats or sanctuaries.

A Facility is defined as follows:

A transportational, commercial, industrial, agricultural, intensive recreational or utilities/services building or structure and/or associated lands (e.g. abattoir, airport, railway, sewage treatment plant, landfill, manufacturing plant, generation stations, sports/concerts stadium, etc.) which produce(s) one or more 'adverse effect(s)' on a neighbouring property or properties

An Industry, Industrial Land Use or Industrial Facility is defined as follows:

A facility or activity relating to: the assemblage and storage of substances/goods/raw materials: their processing and manufacturing; and/or the packaging and shipping of finished products.

Furthermore, the guideline is applicable when a change in land use occurs, or when the placement of a sensitive land use within the actual or potential influence area of a facility for the following possible scenarios:

- formulation and review of land use policies, guidelines or programs;
- review of municipal and other levels of government general plans and proposals; and
- review of site-specific development plans (including redevelopment and/or infill proposals).

Land use plans, proposals, policies and programs should be designed to protect incompatible land uses from each other by preventing or minimizing potential adverse effects. Often, the most effective buffer is distance. For this reason, a suitable separation distance based on a facility's potential or actual area of influence is considered the preferred mitigation approach for potential adverse effects. This distance should allow the functioning of the land uses under consideration without resulting in a potential adverse effect.

When a separation distance is used as a buffering approach and it extends into the property line of the sensitive land use, the MECP encourages the incorporation of intervening land uses or activities that are compatible with both the facility and sensitive land use.

According to Guideline D1, when mitigation efforts cannot resolve impacts of discharges and compatibility issues in order to prevent or minimize potential adverse effects, the development of a new facility or sensitive land use should not be permitted. There may be cases where new developments or redevelopments may be delayed until the mitigation of adverse effects occurs. The process for implementing mitigation measures to reduce or minimize potential adverse effects is described. It is the proponent's responsibility to investigate impacts of existing surrounding land uses (presence and severity) and propose necessary measures for remediation. In cases where a sensitive land use is proposed, the proponent should provide evidence that there will be no potential compatibility issue. This should be done by examining the facilities surrounding the proposed sensitive land use in terms of potential impacts and nature of proposed land use.

When a sensitive land use is proposed, the investigation should include an evaluation of impacts followed by the identification/implementation of feasible mitigation. It is the proponent's responsibility to propose, design and implement mitigation measures, which may be located on the facility site (at emission sources or elsewhere), on the sensitive land use site, or on the intervening lands. Mitigation measures should depend on the scale and design of the facilities as well as the duration, frequency and type of discharges and/or impacts.

3.1.2 Guideline D-6 Compatibility between Industrial Facilities and Sensitive Land Uses

Guideline D6 discusses the applicability of Guideline D1 for industrial facilities. The purpose of Guideline D6 is to prevent or minimize land use incompatibility or potential adverse effects between sensitive and industrial land uses. This purpose is achieved by the suggestion of separation distances. However, it is Golder's understanding that Guideline D6 is primarily a screening tool and in Guideline D6, the MECP notes that detailed studies should be completed to determine site-specific separation distances.

Guideline D6 applies to proposed, committed and/or existing industrial land uses that have the potential to generate point and/or fugitive atmospheric emissions (noise, vibration, odour, dust and others) through normal operations, procedures, maintenance or storage activities, and/or from associated traffic/transportation. Guideline D6 does not apply to non-stationary industrial facilities (e.g., mobile asphalt plant), roadways and railways (except ancillary facilities), agricultural operations, airports, or pits and quarries.

If an actual influence area is not available, Guideline D6 provides potential influence areas (separation distances) for three different classes of industrial land uses. The three different classes of industrial land uses are:

Class I – Small scale business that is a self-contained plant or building which produces/stores a product contained to a package and has a low probability of fugitive emissions. Infrequent movement of products and/or heavy trucks. No outside storage. The facility only operates during the daytime period.

Class II – Medium scale processing and manufacturing with occasional outputs of either point of fugitive emissions. Frequent movement of products and/or heavy trucks during the daytime hours. Outside storage of wastes or materials exists. The facility is permitted to have shift operations.

Class III – Large scale processing or manufacturing. Frequent outputs of major annoyance with a high probability of fugitive emissions. Continuous movement of products. Outside storage of raw and finished product exists. The facility is permitted to have shift operations.

More details on the output, scale, process, operations or intensity, and examples for each designation is provided in Guideline D6.

The MECP has identified areas of influence and minimum separation distances for each of the industrial facility classes, which are presented in Table 1. Actual influence areas refer to overall ranges within which a potential adverse effect would occur or is experienced. These areas are site-specific for facilities. Guideline D6 recommends that there should not be incompatible land uses within the minimum separation distance unless a detailed study that focuses on the actual influence area (i.e., anticipated and actual site specific impacts) is carried out. The minimum separation distance is the distance between the designation, zoning or property lines of closest proposed or existing sensitive and industrial land uses.

Designation	Actual Influence Areas Separation Distance (m)	Potential Influence Areas Separation Distance (m)	Minimum Separation Distance (m)
Class I (Light Industrial)	Site Specific	70	20
Class II (Medium Industrial)	Site Specific	300	70
Class III (Heavy Industrial)	Site Specific	1000	300

Table 1: Summary of MECP Identified Areas of Influence and Recommended Separation Distances

It also should be noted that even where facilities meet the recommended separation distances specified in the Guideline D6, an air, odour, noise and/or vibration assessment may still be required to ensure that the facility meets the applicable guidelines and regulations. A detailed technical study may show that a different separation distance is more appropriate.

3.2 Ontario Environmental Protection Act and Environmental Compliance Approvals

The Ontario Environmental Protection Act, R.S.O 1990 Chapter E.19 (EPA) is legislation to provide for the protection and conservation of the natural environment. The EPA regulates the discharge of contaminants into the natural environment and is administered by the MECP.

Activities that fall under Section 9 of the EPA, in Section 20.2 of Part II.1 of the EPA, require that an approval must be obtained before installation or modification of all atmospheric emission sources (i.e., air, odour, noise and vibration). O.Reg.524/98 exempts some equipment and/or processes from Section 9 approval requirements. This regulation was amended in 2017 to include additional equipment and/or processes that can be considered exempt if specific criteria are met. However, the exempt sources must meet the specific operating requirements in O.Reg.524/98. In addition, the exempt sources may be required to show compliance with other regulatory requirements.

For equipment that is not exempt, the primary North American Industrial Classification System (NAICS) code that best describes a facility, the equipment on site as well as other eligibility criteria dictate the type of approval required. Approval is granted by either obtaining an Environmental Compliance Approval (ECA) for the equipment under Part II.1 of the EPA or by registering on the Air Emissions Environmental Activity and Sector Registry (EASR) under Part II.2 of the EPA. O.Reg.1/17 sets out the requirements and procedures for facilities with activities / equipment that are required to register on the Air Emissions EASR. Facilities that do not meet the requirements to register must obtain an ECA. When a facility requires an approval under Section 9 of the EPA, facilities are required to demonstrate compliance with the MECP's noise and vibration guidelines. The MECP's Environmental Noise Guideline Stationary and Transportation Sources – Approval and Planning Publication NPC-300 (August 2013) (NPC-300) is applied to noise emission sources while the specific vibration guideline depends on the type of vibration emission source.

3.3 Noise Guidelines

According to the Guideline D6, a feasibility study for noise should be carried out in accordance with MECP Publication LU-131 – Noise Assessment Criteria in Land Use Planning (October 1997) (LU-131). NPC-300 replaced LU-131. NPC-300 provides advice, sound level limits and guidance for the approval of stationary sources and for land use planning purposes. For the land use planning process, it is intended to provide a common framework to address noise to minimize the potential conflict between proposed noise sensitive land uses and sources of noise emissions. The following is a summary of NPC-300.

3.3.1 Environmental Noise Guideline Stationary and Transportation Sources – Approval and Planning Publication NPC-300

Land Use Planning

As set out in NPC-300 Part C, the MECP has no authority under the Planning Act regarding the land use planning approval process as its primary role is to issue approvals required by the EPA. The local land use planning authority is responsible for the land use planning process. In the effort of targeting consistency throughout the province, NPC-300 has been provided by the MECP as a tool for local planning authorities to consider. The MECP suggests feasibility and/or detailed noise impact studies be submitted to the land use planning authority. In addition, Part C of NPC-300 states the purpose of a noise study is to assess the impact of all noise sources affecting the proposed sensitive land use and provides guidance primarily on stationary and transportation sources of noise. The objectives of noise studies carried out as part of the land use planning approval process should be to support the following:

- 1) Creating a suitable acoustical environment for the protection of users/occupants/residents of the proposed noise sensitive land uses.
- 2) Protecting the lawful operation of any stationary sources(s) located close to a proposed noise sensitive land use. Legally operating stationary sources need to be able to maintain compliance with legal requirements of their MECP issued approval with the introduction of new noise sensitive land uses in proximity of their site.
- 3) Protecting existing and/or formally approved transportation corridors and transportation sources of noise with the introduction of new noise sensitive land uses in proximity of their site.
- 4) Creating compatible land uses and avoiding potential adverse effects due to noise.

According to NPC-300, the proponent of a new noise sensitive land use is identified as being responsible for ensuring compliance with the applicable sound level limits and the following:

- 1) Determining the feasibility of the project;
- 2) Assessing outdoor and indoor acoustical environments, as appropriate;
- 3) Investigation of feasible means of noise impact mitigation;
- 4) Ensuring that required noise control measures are incorporated in the development; and
- 5) Describing the technical details and clarifying the responsibility for the implementation and maintenance of required noise control measures.

Area Classifications

Sound level limits are defined in NPC-300 Part B and C for various acoustical environment area classifications. A Class 1 area is defined as an area with an acoustical environment typical of a major population centre, where the background sound level is dominated by the activities of people, usually road traffic, often referred to as the "urban hum". A Class 3 area is defined as a rural area with an acoustical environment that is dominated by natural sounds having little or no traffic. A Class 2 area is defined as an area with an acoustical environment that has qualities representative of both Class 1 and Class 3 areas. A Class 4 area is defined as an area or specific site that would otherwise be defined as Class 1 or 2 areas and:

- is an area intended for development with new noise sensitive land use(s) that are not yet built;
- is in proximity to existing, lawfully established stationary source(s); and
- has formal confirmation from the land use planning authority to proceed with the Class 4 area classification, which is determined during the land use planning process.

Stationary Sources

Stationary sources of noise refer to a sound (i.e., steady and varying sounds and impulsive sounds) that normally operates within the property line of a facility. NPC-300 provides several examples of stationary sources and how each one applies to Part B and/or Part C of NPC-300 (i.e., exemptions). NPC-300 states stationary sources will need to comply with the applicable sound level limit at the existing or potential surrounding Point(s) of Reception (POR(s)) when an environmental application is submitted to the MECP for approval. For steady and varying sounds from a stationary source, the sound level limit at a POR, expressed in terms of the One-Hour Equivalent Sound Level (L_{eq}) is the higher of the applicable exclusionary sound level limit given below in Tables 2 and 3, or the background sound level for that POR. The MECP defines exclusionary sound level limits for Plane of Window (POW) and Outdoor PORs, but exclusionary sound level limits for Outdoor PORs only apply to daytime and evening (07:00 to 23:00 hours) periods as identified in Table 3 below. An Outdoor POR includes locations outdoors within 30 m of a façade (within the property) of a dwelling at a height of 1.5 m above ground, typically in backyards, front yards, terraces or patios, or unenclosed balconies or elevated terraces with a minimum depth of 4 m if they are the only outdoor living area for an occupant. It should be noted that for the noise assessment in Class 1, 2 and 3 areas, it is assumed the window of the POR to be open for POW assessments whereas in a Class 4 area it is assumed that the window is closed.

23:00 - 07:00

45

Luivaient Sound Level (Ley, ubA) FOW of Noise Sensitive Spaces							
Time of Day	Class 1 Area	Class 2 Area	Class 3 Area	Class 4 Area			
07:00 – 19:00	50	50	45	60			
19:00 – 23:00	50	50	40	60			

40

55

Table 2: Stationary Sources (Steady and Varying Sounds) - Exclusionary Sound Level Limit Values of One-Hour Equivalent Sound Level (Leq, dBA) POW of Noise Sensitive Spaces

Table 3: Stationary Sources (Steady and Varying Sounds) - Exclusionary Sound Level Limit Values of One-Hour Equivalent Sound Level (Leq, dBA) Outdoor POR

45

Time of Day	Class 1 Area	Class 2 Area	Class 3 Area	Class 4 Area
07:00 – 19:00	50	50	45	55
19:00 – 23:00	50	45	40	55

For impulsive sounds from a stationary source, the sound level limit at a POR expressed in terms of the Logarithmic Mean Impulse Sound Level (L_{LM}) is the higher of the applicable exclusionary level limit given below in Tables 4 and 5 for the POW and Outdoor POR or the background sound level for that POR.

Table 4: Stationary Sources (Impulsive Sounds) - Exclusionary Sound Level Limit Values of Logarithmic Mean Impulse Sound Level (LLM, dBAI) POW of Noise Sensitive Spaces

Actual Number of Impulses in Period of One-Hour	Class 1 Area (07:00-23:00)/ (23:00-07:00)	Class 2 Area (07:00-23:00)/ (23:00-07:00)	Class 3 Area (07:00-19:00)/ (19:00-07:00)	Class 4 Area (07:00-23:00)/ (23:00-07:00)
9 or more	50/45	50/45	45/40	60/55
7 to 8	55/50	55/50	50/45	65/60
5 to 6	60/55	60/55	55/50	70/65
4	65/60	65/60	60/55	75/70
3	70/65	70/65	65/60	80/75
2	75/70	75/70	70/65	85/80
1	80/75	80/75	75/70	90/85

Time of Day	Actual Number of Impulses in Period of One-Hour	Class 1 Area	Class 2 Area	Class 3 Area	Class 4 Area
07:00 - 23:00	9 or more	50	50	45	60
	7 to 8	55	55	50	65
	5 to 6	60	60	55	70
	4	65	65	60	75
	3	70	70	65	80
	2	75	75	70	85
	1	80	80	75	90

Table 5: Stationary Sources (Impulsive Sounds) - Exclusionary Sound Level Limit Values of Logarithmic Mean Impulse Sound Level (LLM, dBAI) Outdoor POR

According to NPC-300, the proponent of a new noise sensitive land use and respective land use planning authority should ensure that an existing legally operating stationary sources of noise will be able to continue to comply with the applicable sound level limits. If noise mitigation is required, the preferred option is to alter the stationary source itself and be completed through a joint effort between the proponent and owner of the stationary source.

Emergency Equipment

In assessing noise sources associated with emergency equipment, Section B7.3 of the NPC-300 guideline outlines the emergency equipment sound level limits as follows:

The sound level limits for noise produced by emergency equipment operating in non-emergency situations, such as testing or maintenance of such equipment, are 5 dB greater than the sound level limits otherwise applicable to stationary sources.

The noise produced by emergency equipment operating in non-emergency situations should be assessed independently of all other stationary sources of noise. Specifically, the emissions are not required to be included with the overall noise assessment of a stationary source facility.

Transportation Sources

Transportation sources of noise include road, rail and aircraft traffic sources. These transportation noise sources are assessed as follows:

- Outdoor noise levels due to aircraft should be established separately from the impact due to road and/or rail traffic.
- 2) Outdoor noise levels due to road and rail should be combined.
- 3) Indoor noise levels should be assessed separately for road, rail and aircraft traffic.

Road and rail traffic noise sources are evaluated using commonly used prediction methods within the industry which includes the assessment of projected traffic volume a minimum 10-years into the future. The commonly used prediction method for road traffic noise is Ontario Road Noise Analysis Method for Environment and Transportation (ORNAMENT) and for rail traffic noise is Sound from Trains Environmental Analysis Method (STEAM). Other traffic noise prediction models have been and are being developed by various authorities and may be adopted from time-to-time for use in Ontario by the MECP. The road and rail traffic noise descriptors are the 16-hour daytime and the 8-hour nighttime equivalent sound level (i.e., Leq(16) and Leq(8)). The assessment of road traffic noise impact, if required by the land use planning authority, is evaluated through predictions using statistically averaged road traffic information, based on the higher of the AADT (Annual Average Daily Traffic) or SADT (Summer Average Daily Traffic).

NPC-300 specifically addresses the following for road and rail traffic noise sources:

- sound levels at the plane of residential windows to determine ventilation requirements;
- sound levels in indoor areas to determine exterior building component requirements;
- sound levels in the outdoor living areas for exterior noise control requirements; and
- noise warning clauses.

NPC-300 provides specific ventilation requirements for developments depending on the expected noise levels from road and rail traffic at the residential plane of windows, which are summarized in the Table 6 below. It should be noted that noise from train whistles are excluded for assessment of ventilation requirements.

Table 6: Road and Rail Nois	e Ventilation Requirements
-----------------------------	----------------------------

Road and Rail Traffic Nois	Road and Rail Traffic Noise Level at Plane of Window		
16-Hour Daytime Leq (07:00 – 23:00)	8-Hour Nighttime Leq (23:00 – 07:00)	Ventilation Requirement	
Less than 55 dBA	Less than 50 dBA	No special ventilation requirements	
55 to 65 dBA	50 to 60 dBA	Forced air system with provisions for installation of air-conditioning	
Greater than 65 dBA	Greater than 60 dBA	Air-conditioning is mandatory to allow windows to remain closed	

Outdoor noise levels are predicted at Outdoor Living Areas (OLA). According to NPC-300, an OLA is a noise sensitive land use that is intended for the quiet enjoyment of the outdoor environment and is readily accessible from the building. An OLA includes backyards, gardens, terraces or patios, unenclosed balconies or elevated terraces with a minimum depth of 4 m (provided they are the only OLA for an occupant) and common OLAs associated with high-rise multi-unit buildings. Table 7 below summarizes the sound level limits for OLAs during the 16 hour daytime period.

Road and Rail Traffic Noise Level in OLA 16-Hour Daytime Leq (07:00 – 23:00)	Noise Control Requirement
Less than 55 dBA	No noise control required
55 to 60 dBA	Noise controls are required to reduce OLA noise levels to 55 dBA or less; OR Noise controls are not required but owners/tenants must be warned about excessive noise in OLAs via a warning clause
Greater than 60 dBA	Noise controls are required to reduce OLA noise levels to 55 dBA or less; OR If noise controls are not feasible due to technical, economic or administrative reasons, no noise controls are required and owners/tenants must be warned about excessive noise in OLAs via a warning clause

Table 7: Outdoor Living Area Noise Control Requirements

Indoor noise levels are predicted in commonly used types of indoor spaces such as a bedroom or living area. Table 8 below summarizes the sound level limits for different types of indoor spaces during the applicable time periods. It should be noted that noise from train whistles is included in the assessment of indoor rail noise requirements.

For road traffic, if the outdoor daytime sound level at the POW exceeds 65 dBA or the outdoor nighttime sound level at the POW exceeds 60 dBA, building components should be designed so that the indoor sound levels comply with the sound level limits in Table 8.

For rail traffic, if the outdoor daytime sound level at the POW exceeds 60 dBA or the outdoor nighttime sound level at the POW exceeds 55 dBA, building components should be designed so that the indoor sound levels comply with the sound level limits in Table 8. Note that the exterior walls of the first row of dwellings next to railway tracks are to be built to a minimum of brick veneer or masonry equivalent construction, from the foundation to the rafters when 24 hour rail traffic noise is greater than 60 dBA, and when the first row of dwellings is within 100 metres of the tracks.

Table 8: Indoor Sound Level Limits for Road and Rail Traffic Noise

Space	Road (dBA)	Rail (dBA)
Living quarters - Living/dining areas of residences, libraries, daycare centres, etc. (Time period 16 hours; 07:00- 23:00) – Leq [16 hours]	45	40
Sleeping quarters - Bedrooms of residences and hotels (Time period 8 hours; 23:00- 07:00) – Leq [8 hours]	40	35

In addition, NPC-300 contains sample warning clauses to inform future owners/tenants of potential noise effects due to road and rail traffic. The suggested wording of the warning clauses varies with the degree of noise impact, the ventilation requirements, and the type of noise control features included.

Aircraft noise is assessed in a detailed noise study on current or future Noise Exposure Forecast/Noise Exposure Projection (NEF/NEP) contours, a metric and method implemented by Transport Canada. The 30 NEF/NEP contour is the outdoor sound level limit and indoor aircraft sound level limits are provided and compared to calculated noise levels generated from the predicted outdoor noise levels.

Noise Control Measures

According to NPC-300, noise control measures can be used to achieve compatibility for the specific land use or activity with respect to noise from transportation and/or stationary sources. Noise control measures may include but are not limited to the following: 1) source based noise controls; 2) receptor based outdoor noise controls; 3) receptor based "on building" noise controls (Class 4 only); 4) receptor based site configuration noise controls; 5) receptor based site construction and architectural noise controls. The following are to be considered when establishing noise control measures for stationary sources:

- Proponent of a new noise sensitive land use and respective land use planning authority should ensure the legally operating stationary sources of noise will be able to continue to comply with the applicable sound level limits.
- If noise mitigation is required, the preferred option is to alter the stationary source itself, completed through a joint effort between the proponent and owner of the stationary source. Typically, noise mitigation is most effective when implemented at either the noise source or at the POR. The feasibility of implementing and the responsibility, including maintenance, of any noise mitigation controls will need to be confirmed, typically in the detailed study. Agreements for noise mitigation between the stationary source owner, land use planning authority and the noise sensitive land use owner/developer may be required.
- If receptor based noise control measures are to be used, the implementation and maintenance should be included in an agreement between the developer, the land use planning authority, and the owner of the stationary source.
- A warning clause is not acceptable in place of physical noise mitigation to identify an exceedance with MECP sound level limits. Warning clauses for stationary sources may identify a potential concern due to the proximity of a facility. In general, the effectiveness of warning clauses is unknown. They should be included and are important as part of the overall noise mitigation plan for any proposed development, but it does not ensure that noise complaints will not occur.

3.3.2 City of Niagara Falls Noise and/or Vibration By-Law

The City's *Noise Control By-Law No. 2004-105 as amended by: By-law 2005 - 73, By-law 2007-28 and By-law 2014-155* (By-Law) outlines various prohibitions and time limitations on various noise sources, exempted activities, and procedures on obtaining an exemption. It does not provide specific sound level limits.

3.4 Vibration Guidelines

As identified in the EPA and Guideline D-1, vibration is a contaminant and facilities are not to emit vibration such that it results in an "adverse effect". Vibration is not permitted to be discharged into the natural environment without an approval. The following are MECP publications applicable to stationary sources of vibration and/or transportation (i.e., ground-borne vibration):

- Publication NPC-207: Impulse Vibration in Residential Buildings (Draft). November 1983. MECP. (NPC-207).
- Guideline for Noise and Vibration Assessment of Transit Projects (Draft #9). January 1995. MECP.

It is Golder's understanding both of these publications have not received final MECP approval but have been referenced in many ECAs or other assessments. NPC-207 defines vibration level limits at a POR for frequent and infrequent vibration impulses during the daytime and nighttime hours.

In addition to the above MECP publications, the following may be considered relevant when assessing transportation sources of vibration, specifically due to rail traffic:

- Canadian National (CN) Principal Main Line Requirements.
- GO Transit Principal Main Line Requirements.
- ISO 2631-2 Evaluation of Human Exposure to Whole-Body Vibration.
- United States of America Department of Transportation. Federal Transit Administration (FTA). Transit Noise and Vibration Impact Assessment (FTA Report No. 0123, September 2018) (FTA Manual).
- Railway Association of Canada Guidelines for New Development in Proximity to Railway Operations (May 2013) (RAC Railway Guidelines).

For this Study, the RAC Railway Guidelines were used to assess vibration due to rail traffic. The RAC Railway Guidelines are similar to the CN Principal Main Line Requirements, GO Transit Principal Mainline Requirements and Guideline for Noise and Vibration Assessment of Transit Projects (Draft #9) but is considered a more comprehensive guideline that provides a common approach to the prevention and resolution of issues arising from development occurring in close proximity to railway corridors and other rail operations. In addition, the RAC Railway Guidelines were recently revised and developed by a team that included representation from CN, CP, Metrolinx and various cities/municipalities.

The RAC Railway Guidelines is meant to be used by municipalities and provincial governments, municipal staff, railways, developers and property owners when lands in proximity to railway operations are being developed. It was developed in cooperation between the Federation of Canadian Municipalities and the Railway Association of Canada. The RAC Railway Guidelines provides guidance for new developments, not existing ones, in proximity to railway operations understanding residential developments in proximity to railway operations will need to be planned appropriately. It identifies common issues and constraints, including the need to provide sufficient noise and vibration mitigation measures.

One desirable design condition considered a mitigation measure is the implementation of the following standard recommended building setbacks, for new residential development in proximity to railway operations, measured from the railway right-of-way:

- Freight Rail Yard 300 metres;
- Principle Main Line 30 metres;
- Secondary Main Line 30 metres;
- Principle Branch Line 15 metres;
- Secondary Branch Line 15 metres;
- Spur Line 15 metres.

These setback distances are applicable to dwellings and do not include certain uses and structures where these setback distances could be reduced. As stated in the RAC Railway Guidelines, noise and vibration from rail operations are two of the primary sources of complaints from residents living near railway corridors. Sources of rail noise are primarily from train pass-bys and rail yard activities. Noise due to train pass-bys is typically intermittent and primarily from the locomotive but also includes whistles and car wheels on the tracks. In addition, noise impacts will depend on the frequency of trains, speed and exposure (distance/shielding between the sensitive land use and railway operations). Ground borne vibration due to the wheel-rail interface travels from the railway tracks and into the ground, possibly eventually propagating to nearby buildings. Vibration is considered to be more difficult to predict and mitigate than noise. The RAC Railway Guidelines identifies a methodology to collect vibration measurements and the main points include:

- Vibration measurements will be conducted at the closest proposed residential receptor and/or the minimum building setback (i.e. 30 m for a main rail line, 15 m for a branch or spur line). If the proposed dwelling units are located more than 75 m from the railway right-of-way, vibration measurements are not required.
- A minimum of five (5) train pass bys will be recorded at each measurement location.
- The measurement equipment will be capable of measuring between 4 Hz and 200 Hz with an RMS averaging time constant of 1 second.
- A vibration limit of 0.14 mm/s will used in the assessment.

The RAC Railway Guidelines identifies standard mitigation or alternative development solutions (i.e., crash walls) be considered for mitigation design, by both the developer and municipalities, when designing or assessing new residential development in proximity to a railway corridor. In the end, all mitigation measures should be designed to the highest possible urban design standards. Standard mitigation measures could include the following:

- apply standard recommended building setbacks (see above) from the mutual property line (i.e., Railway right-of-way) and the building façade;
- chain link security fencing, 1.83 m high, along the mutual property line;
- safety berm, 2.5 m high; and
- noise barrier at least 5.5 m above top of rail (i.e., 2.5 m berm and 3.0 m noise barrier). Terrain will either increase or decrease the overall height of the noise barrier.

1784521

The specific mitigation required depends on a number of factors including the designation of the line (i.e. Principle Main, Secondary Branch, Spur Line, etc.) Recommendations for the preparation of noise and vibration impact studies is provided in Appendix C of the RAC Railway Guideline which summarizes the requirements. The criteria presented in Appendix C of the RAC Railway Guideline was adapted from the MECP Publication LU-131 Noise Assessment Criteria in Land Use Planning (October 1997) Guideline, which was replaced by NPC-300.

When municipalities deem a site suitable for residential use, the Railway Guidelines recommends a *Model Review Process for New Residential Development, Infill and Conversions in Proximity to Railway Corridors* be carried out. Proponents are encouraged to consult with the railway early in the development process to discuss and determine the feasibility of a project (i.e. capacity of the site to accommodate standard building setbacks). Through this process for sites unable to accommodate standard mitigation measures, a Development Viability Assessment Report will be required. The RAC Railway Guidelines Appendix A describes the requirements of the Development Viability Assessment Report.

4.0 EXISTING CONDITIONS REVIEW

The second step in this Study was developing an understanding of the existing conditions within and surrounding the Project Site with the purpose of identifying key noise and vibration emission sources to be further assessed. The existing conditions were determined using the following methodology:

- review documents either provided by the Project team or publicly readily available;
- search for ECA (Air Quality and Noise) or Air Emission EASR approvals using the MECP Access Environment online tool;
- review and apply the City's online resources (i.e., open data catalogue system);
- completion of field reconnaissance surveys and measurements; and
- review any ECA supporting documents and/or noise data provided by industrial facilities surrounding the Project Site. This information was requested and was received from some industries. If any additional data is provided in the future, it may require this Study be updated accordingly.

4.1 **Document Review**

Golder reviewed several documents either provided by the Project team or publicly readily available. This document review process enabled Golder to develop a better understanding of the Project and the lands surrounding the Project, and allowed Golder to focus subsequent efforts. The following documents were reviewed for this Study.

- Arcadis Canada Inc (Arcadis). Sensitive Land Use Study (Air Quality) in Support of Planning Applications for Potential Residential Development – Thundering Waters Golf Course and Adjacent Lands. October 2016. (Arcadis Report)
- RWDI Air Inc. (RWDI). Thundering Waters Secondary Plan. Air Quality, Noise and Vibration Feasibility Assessment Version 2.0. June 23, 2016. (RWDI Report)
- Urban and Environmental Management Inc (UEM). Thunder Waters Golf Course Lands Report. June 28, 2016. (UEM Report)
- Urban and Environmental Management Inc. (UEM). Thundering Waters Golf Course Development Opportunities and Constraints Analysis. December 9, 2016. (UEM Constraints Analysis)
 - Memo. Thundering Waters Golf Course Development Meeting with City of Niagara Falls Staff. May 26, 2016.
- R.J. Burnside & Associates Limited (Burnside). Niagara Village Transportation Study. January 2020. (Transportation Study)

Below is a summary of the sections in the above documents relevant for the purposes of this Study.

4.1.1 Arcadis Report

Arcadis carried out a land use compatibility assessment that verified the required separation distances between the proposed residential development within the Site and the nearby industrial facilities in accordance with the MECP Guideline D6. The assessment focused on Class II and Class III industrial land uses at that time and determined the Guideline D6 separation distance for the following industrial facilities:

- 1) Washington Mills Electro Minerals Corporation Class III
- 2) Mancuso Chemicals Limited Class III
- 3) Chemtrade Logistics Inc. Class II
- 4) Dufferin Concrete Class II
- 5) Quality Ready Mix (Centennial Concrete Niagara) Class II
- 6) Salit Steel Class II
- 7) L.Walter & Sons Excavating Ltd. Class III
- 8) Palfinger Class II
- 9) Avid Growing System Class I
- 10) Tri Cast Bronze Not Classified (Vacant)

The assessment concluded significant air quality and/or noise impacts are not expected on the proposed residential development within the Site and adjacent development lands, due to the industrial land uses at the time of the assessment. The Guideline D6 recommended separation distances impinge onto small sections of the proposed residential development.

The Arcadis Report Guideline D6 assessment formed the basis of Golder's list of industrial facilities surrounding the Project Site.

4.1.2 UEM Report

The UEM Report summarized the findings from a site visit, review of available information, discussion and meeting with municipal staff and input from others to identify potential constraints on the development of the Site and the implementation of reasonable mitigation measures. The minimum separation distances recommended in Guideline D6 would still need to be applied and a 15 m setback distance from the existing railway line would still be required. The rail line that travels through the centre is considered an industrial spur rail line and services the industrial facilities in the area. During a meeting with City staff on May 26, 2016, the City indicated that they believe there would be challenges in developing the Project Site for residential use due to the proximity to, and compatibility with, adjacent industrial properties and existing heavy industrial but the City also indicated that there are a number of mitigation measures that can be utilized. Furthermore, the City identified a setback distance of 300 m to be maintained from Salit Steel based on their Guideline D6 classification of this industrial facility to be Class III. Other nearby developments previously classified Salit Steel as Class II which the City disagreed with. The UEM Report identified setbacks as a mitigation measure and that the minimum setbacks could be possibly reduced through more detailed studies.

4.1.3 RWDI Report

RWDI conducted an Air Quality, Noise and Vibration Feasibility Assessment for the Thundering Waters Secondary Plan development that is currently known as the Riverfront Community, southwest of the Project Site. The noise and vibration emission from nearby industry and the rail line that travels through its centre were both considered. Road traffic and aircraft flyovers were identified as distant and not expected to significantly influence sound levels at the development being assessed. The assessment of industry focused primarily on Class III industries while those identified as Class II were qualitatively reviewed. RWDI previously carried out a Guideline D6 assessment in November 2015 and the RWDI Report reviewed those results and reclassified some of the industry identified as Class III to Class II. The rail line vibration levels were predicted using FTA algorithms. Noise control measures consisting of noise barriers and administrative controls were presented for various industry surrounding the development.

4.1.4 UEM Constraints Analysis

UEM was retained to review development options for the Site. This document appears to be similar and/or rely on the information presented in the UEM Report. UEM identified constraints on the Site and adjacent properties if the Project progressed and identified the potential to mitigate the constraints to increase the amount of lands that could be developed on the Site. A review of the RWDI and Arcadis Reports was carried out by UEM and they identified differences in the Guideline D6 classification of some industrial facilities. UEM concluded the Arcadis report to be more appropriate since it was specifically completed for the Site and their assessment included discussions with the MECP district office.

4.1.5 Burnside Transportation Study

R.J. Burnside & Associates Limited (Burnside) prepared a draft existing condition study dated January 2020 (Transportation Study) that provides a preliminary assessment of the key transportation related issues, relevant background reports/studies, existing and future traffic data, existing and future travel demand characteristics and infrastructure deficiencies. The Transportation Study was used to support the assessment of noise due to road traffic for the purposes of this Study.

4.2 Existing Environmental Compliance Approvals

An online search through the MECP Access Environment tool in June 2018 was initially used to identify industrial facilities surrounding the Project Site that have ECAs (for Air and Noise) or Air Emissions EASRs. Table 9 below outlines the status of the identified industrial facilities as of January 2020.

Item	Facility Name	Facility Address	Date of Approval	Approval Type	Status	Does it Include a Noise Assessment? ¹
1	Chemtrade	6300 Oldfield Road	September 18, 2019	EASR-Air	Approved	Yes
2	Laurcoat Inc.	8100 Dorchester Road Building B	April 17, 2012	ECA-AIR	Approved	No

Table 9: Summary of MECP ECA and EASR Search

ltem	Facility Name	Facility Address	Date of Approval	Approval Type	Status	Does it Include a Noise Assessment? ¹
3	CYRO Canada Inc.	8100 Dorchester Road Building B	June 29, 2000	ECA-AIR	Approved	No
4	Ingot Metal Company Limited	5868 Ramsey Road	July 12, 2004	ECA-AIR	Revoked and/or Replaced	Yes
5	Washington Mills Electro Minerals Corporation	7780 Stanley Avenue	January 6, 2016	ECA-AIR	Approved	Yes
6	H & L. Tool and Die Ltd.	5955 Don Murie Street	November 6, 2010	ECA-AIR	Approved	No
7	1683063 Ontario Inc. (Milestone Millwork)	6100 Progress Street	May 25, 2006	ECA-AIR	Revoked and/or Replaced	No
8	Niagara Pattern Limited	6135 Don Murie Street	October 21, 2010	ECA-AIR	Approved	No
9	The Regional Municipality of Niagara	4414 Chippawa Parkway	August 4, 2004	ECA-AIR	Revoked and/or Replaced	No
10	Edscha North America Inc.	5795 Don Murie Street	January 10, 2007	ECA-AIR	Approved	No
11	Brunner Manufacturing & Sales Ltd.	5720 Don Murie Street	January 25, 2012	ECA-AIR	Approved	No
12	Tecna-Division of Brunner	5770 Don Murie Street	April 12, 2005	ECA-AIR	Approved	No
13	Laurcoat Inc.	8591 Earl Thomas Avenue	September 15, 2015	ECA-AIR	Approved	No
14	St. Lawrence Cement Inc. / Dufferin Concrete	5980 Don Murie Street	September 27, 2006	ECA-AIR	Approved	Yes

ltem	Facility Name	Facility Address	Date of Approval	Approval Type	Status	Does it Include a Noise Assessment? ¹
15	Pumpcrete Corporation	6000 Progress Street	April 30, 2004	ECA-AIR	Approved	No
16	Mancuso Chemicals Limited	5635 & 5725 Progress Street	May 11, 2017	ECA-AIR	Approved	Yes
17	Hoco Limited	5720 Progress Street	January 6, 2003	ECA-AIR	Approved	No
18	Niagara Industrial Finishes Inc.	5635 Progress Street	June 25, 2010	ECA-AIR	Approved	No
19	Specialty Cast Metals Ltd.	5635 Progress Street	December 20, 2002	ECA-AIR	Revoked and/or Replaced	Yes
20	Barbisan Allmetal Designs	5835 Progress Street	October 26, 2001	ECA-AIR	Approved	No
21	Can Mar Manufacturing Inc.	5869 Progress Street	October 8, 2004	ECA-AIR	Approved	No
22	Fencast Industries Ltd	6272 Kister Road	November 29, 2009	ECA-AIR	Approved	No

1 Noise Assessment includes one of the following: Primary Noise Screening, Secondary Noise Screening or Acoustic Assessment Report.

A facility is responsible for obtaining and maintaining an ECA/EASR and supporting documentation. Once an ECA/EASR has been issued by the MECP, it is expected that the facility is in compliance with the MECP standards and guidelines.

The proposed introduction of sensitive land use (i.e. POR(s)) within the Project Site may introduce PORs that are more sensitive than PORs identified in the noise studies prepared for the respective industries. New PORs may affect the compliance status of facilities with existing ECAs, especially when located in closer proximity than existing PORs. In such cases, an ECA amendment or an update of supporting EASR documents may be required to incorporate an assessment of any new PORs.

4.3 City of Niagara Resources

4.3.1 City of Niagara Zoning By-Law Number 79-200

The City of Niagara Falls Zoning By-law Number 79-200 is one of four zoning by-laws within the City and regulates the lands in Chippawa and north of the Welland River. The zoning provisions identified in these by-laws describe all the possible permitted land uses. Zoning By-law Number 79-200 was made into law on November 5, 1979 and an online version, last updated in October 2018, is available at www.niagarafalls.ca. The Project Site is subject to the Zoning By-Law Number 79-200 and is zoned "Open Space" and is adjacent to the following land uses:

- LI Light Industrial;
- GI General Industrial;
- HI Heavy Industrial;
- PI Prestige Industrial;
- NC-H Neighbourhood Commercial Holding Zone;
- R1E Residential Single Family 1E Density Zone;
- R5F Residential Apartment 5F Density Zone;
- R3 Residential Mixed Zone;
- OS Open Space Zone.

An area zoned for Open Space has following permitted uses:

- Agricultural;
- Commercial forestry;
- Boating club;
- Cemetery;
- Hospital;
- Private club;
- Recreational uses;
- Religious institution;
- Riding stable;
- Sanatorium;
- School;
- Accessory buildings and accessory structures including not more than one dwelling unit which is on the same lot as and is accessory to a use listed above.

Note that some of the uses permitted by an open space are considered to be noise sensitive spaces by NPC-300.

There are areas within the Project Site designated with a holding provision "OS-H". Figure 2 illustrates the current zoning in accordance to the City's By-law 79-200 at the time of this Study.

4.3.2 City of Niagara Open Data Portal

The City has made available various datasets to the public through their Open Data Portal. Golder reviewed the various datasets available at the time of this Study and utilized the following data:

- Average Annual Daily Traffic (AADT) Data (2015);
- Road Centreline (2018);
- Zoning By-law 79-200 (2018);
- Property Parcels (2017); and
- Address Points (2018).

In addition to the datasets above, Golder utilized orthoimagery available from Bing webservices, Southwestern Ontario Orthophotography Project (SWOOP) 2015 Digital Terrain Model, terrain as provided by Burnside, and Ontario Railway Network (ORWN) datasets.

4.4 CP Montrose Subdivision Rail Line

According to the Railway Association of Canada's (RAC) Online Map

(<u>https://rac.jmaponline.net/canadianrailatlas/</u>), the rail line that passes through the Project Sites centre is owned by CP and is the CP Montrose Subdivision. CP identified this rail line as an industrial spur line and provided traffic data along this rail line for use in this Study. This is included in Appendix A.

CP also provided the following regarding warning clauses for developments near industrial spur lines:

A clause should be inserted in all offers of purchase and sale or lease and in the title deed or lease of each dwelling within 300m of the railway right-of-way, warning prospective purchasers or tenants of the existence of the Railway's operating right-of-way; the possibility of alterations including the possibility that the Railway may expand its operations, which expansion may affect the living environment of the residents notwithstanding the inclusion of noise and vibration attenuating measures in the design of the subdivision and individual units, and that the Railway will not be responsible for complaints or claims arising from the use of its facilities and/or operations.

4.5 Aircraft Noise

The airports surrounding the Project Site based on an online search include Niagara Falls International Airport, Buffalo International Airport and Niagara District Airport. The NEF/NEP 25 contours, which are required in NPC-300 for the purposes of land use compatibility, are not available for any of the airports. The Buffalo International Airport does have Noise Exposure Maps (NEMs) prepared in accordance with the Federal Aviation Administration (FAA) which differ from NEF/NEP contours but is also used for the purpose of assessing land use compatibility with respect to noise. The NEMs for Buffalo International Airport indicate the area which exceeds the applicable performance limit (i.e. 65 dB DNL) is limited to the lands surrounding it and do not intersect the Project Site. Therefore, aircraft noise from nearby airports was not further assessed in this Study. Helicopter activity, likely due to the Niagara Falls tourist area, was observed when on site. Golder recommends aircraft activity from the tourist area be reviewed again during detailed design and future noise studies and determined whether it requires further assessment.

4.6 Noise Data from Surrounding Industrial Facilities

In trying to complete a thorough assessment, Golder prepared and distributed a letter requesting any noise data from nearby industrial facilities willing to share to support the preparation of this Study. This letter was hand delivered and emailed in June 2018 to the nearby industrial facilities. The letter indicated the Project would like to get a better understanding of the current noise and vibration emissions due to the surrounding industrial facilities to assist in identifying potential concerns. Information requested included any relevant noise and vibration studies, or information prepared for their facilities which includes but is not limited to AARs, ECAs, noise prediction modelling files, Noise Impact Studies and/or Vibration Impact Studies. A copy of the letter is provided in Appendix A.

To-date, the following industries contacted Golder and/or the Project team and either provided information or confirmed they are willing to participate:

- Salit Steel;
- Brunner Manufacturing & Sales Ltd.;
- Tecna-Division of Brunner;
- Washington Mills Electro Minerals Corporation;
- Chemtrade.

4.7 Field Reconnaissance Survey

To assist in determining whether there is likely a potential for noise and vibration emissions to significantly impact the Project Site, Golder carried out a field reconnaissance survey (the Survey) on June 12 and 13, 2018. The Survey involved the collection of qualitative data based on observations from publicly accessible areas (i.e., sidewalks and roads) and the Project Site to verify and supplement the information identified in the sections above.

The Survey was limited to 1 km of the Project Site. It is unlikely that there would be any potential impacts at the Project Site from any existing locations beyond 1 km. The Survey focused on the following:

- verification (or update) of the names, addresses and land use of the industrial facilities in the vicinity of the Project Site;
- identification of the presence of noise and vibration sources;
- observations of facilities physical characteristics;
- observation of industrial facilities that could result in potential adverse effects; and
- observations regarding the type of emissions (e.g., fugitive or process-related) and source of emissions (e.g., exhaust stacks, ventilation equipment, process equipment).

4.8 Summary of Noise and Vibration Emission Sources for Further Assessment

Based on the information identified in Sections 4.1 to 4.7, the following are the noise and vibration emission sources that were further evaluated in this Study.

4.8.1 Noise

The table below lists the industrial facilities surrounding the Project Site that were carried forward for further assessment for noise as of June 2018. If any changes to the list of industrial facilities surrounding the Project Site have occurred since June 2018, they have not been considered.

ID	Facility Name	Facility Address	
IN01	Chemtrade	6300 Oldfield Road	
IN02	Washington Mills Electro Minerals Corporation	7780 Stanley Avenue	
IN03	H & L. Tool and Die Ltd.	5955 Don Murie Street	
IN04	1683063 Ontario Inc. (Milestone Millwork)	6100 Progress Street	
IN05	Niagara Pattern Limited	6135 Don Murie Street	
IN06	Edscha North America Inc.	5795 Don Murie Street	
IN07	Brunner Manufacturing & Sales Ltd.	5720 Don Murie Street	
IN08	Tecna-Division of Brunner	5770 Don Murie Street	
IN09	Laurcoat Inc.	8591 Earl Thomas Avenue	
IN10	St. Lawrence Cement Inc. / Dufferin Concrete	5980 Don Murie Street	
IN11	Pumpcrete Corporation	6000 Progress Street	
IN12	Mancuso Chemicals Limited	5635 & 5725 Progress Street	
IN13	Hoco Limited	5720 Progress Street	
IN14	Barbisan Allmetal Designs	5835 Progress Street	
IN15	Can Mar Manufacturing Inc.	5869 Progress Street	
IN16	Fencast Industries Ltd	6272 Kister Road	
IN17	Marineland Canada	5680 Don Murie Street	
IN18	Falls Contracting Inc.	5850 Unit D Don Murie Street	

Table 10: Industrial Facilities to be Further Assessed

ID	Facility Name	Facility Address
IN19	Dyaco Canada Inc.	5955 Don Murie Street
IN20	Niagara River Trading	6199 Don Murie Street
IN21	Gordon Wright Electrical Limited	6255 Don Murie Street
IN22	Air Liquide Canada Inc.	6090 Don Murie Street
IN23	Airwood Vents	6167 Don Murie Street
IN24	International Sew-Right	6190 Don Murie Street
IN25	Marine Clean Ltd.	6220 Don Murie Street
IN26	Niagara Commercial Coating & Insulation	6260 Don Murie Street
IN27	Deflecto Canada	8699 Stanley Avenue
IN28	Marineland Canada	8529-8559 Stanley Avenue
IN29	Marineland Canada	8455 Stanley Avenue
IN30	Batemans Tires	8407 Stanley Avenue
IN31	Peglow Tool & Die Inc.	8345 Stanley Avenue
IN32	Salit Steel	7771 Stanley Avenue
IN33	L. Wallter & Sons Excavating Ltd.	7527 Stanley Avenue
IN34	Hangups Sportware	6537 Kister Road
IN35	Fastenal	6537 Kister Road
IN36	Micron Installations	6501 Kister Road
IN37	Niagara RV & Trailer Center	6471 Kister Road
IN38	Niagara Bus Wash	6441 Kister Road
IN39	T.Hodgson & Co. Ltd.	6411 Kister Road
IN40	Davert Tools	5676 Progress Street
IN41	Niagara Analytical Laboratories	5805 Progress Street
IN42	Louver-Lite	6015 Progress Street
IN43	Aztec Frames	6025 Progress Street

ID	Facility Name	Facility Address
IN44	GC Customs Services Inc.	6045 Progress Street
IN45	Niagara Fence Supply	6065 Progress Street
IN46	Niagara Fastener Inc.	6095 Progress Street
IN47	Provincial Design & Fabrication Inc.	6159 Progress Street
IN48	Spencer ARL	6040 Progress Street
IN49	Unit 1 Advanced Cryogenic Services	6100 Progress Street
IN50	Lafarge Quality Ready Mix	6224 Progress Street
IN51	Collins Concessions Ltd.	8621 Earl Thomas Avenue
IN52	Factor Forms and Labels	8481 Earl Thomas Avenue
IN53	Stelfab Niagara Limited	8594 Earl Thomas Avenue
IN54	Food Roll Sales (Niagara) Ltd.	8464 Earl Thomas Avenue
IN55	Fred's Concrete	5806 Ramsey Road
IN56	Avid Growing Systems	8100 Dorchester Road
IN57	Palfinger Inc.	7942 Dorchester Road
IN58	Niagara Moving and Storage	7825 Dorchester Road

The following existing roads surrounding the Project Site were carried forward for further assessment for noise:

- Chippawa Creek
- Chippawa Parkway
- Don Murie Street
- Drummond Road
- Lyons Creek
- Marineland Parkway
- McLeod Road
- Montrose Road
- Progress Street
- QEW
- Ramsey Road
- Stanley Avenue.

The CP Montrose Subdivision industrial spur rail line that runs through the Project Site was carried forward for further assessment for noise.

Noise due to aircraft was not further assessed in this Study, but helicopter activity, likely due to the Niagara Falls tourist area, was observed when on site. Golder recommends aircraft activity from the tourist area be reviewed again during detailed design and future noise studies, and determined whether it requires further assessment.

4.8.2 Vibration

Based on the list of industrial facilities and observations during the Survey, no vibration levels were perceived from any identified facility or roads surrounding the Project Site. Therefore, vibration levels from stationary sources were not carried forward. The CP Montrose Subdivision industrial spur rail line that runs through the Project Site was carried forward for further assessment for vibration.

5.0 NOISE ASSESSMENT

The noise assessment for this Project considered the following:

- the potential noise impact of the environment on the Project Site;
- the potential noise impact of the Project Site on the environment; and
- the potential noise impact of the Project Site on itself.

The assessment of the potential impact of the environment on the Project Site considered the potential impact of noise from the surrounding existing industrial facilities' stationary sources, rail traffic and road traffic.

The assessment of the potential impact of the Project Site on the environment considered the potential impact of stationary noise associated within the Project Site and the road traffic due to the Project onto offsite sensitive receptors.

The assessment of the potential impact of the Project onto itself considered the potential impact of stationary noise associated with the Project and the road traffic due to the Project onto onsite sensitive receptors.

5.1 Impact of the Environment on the Project

Golder assessed the potential impact of the future noise environment on the entire Project Site using information and data as described in Section 4.0 in this Study. A noise prediction model considering stationary sources, rail traffic and road traffic was developed to support the assessment of the potential noise impact of the environment on the Project Site using the appropriate guidelines described in Section 3.0.

5.1.1 Field Program

5.1.1.1 Key Industrial Facilities Assessed

Industrial facilities surrounding the Project Site were identified for the assessment of stationary noise sources and are summarized in Section 4.8. To predict the noise levels within the Project Site, key industrial facilities were identified to be considered in the noise prediction modelling. To identify which industrial facilities were to be carried forward into the noise prediction model, industrial facilities were identified as either being or having the potential to be acoustically significant relative to the existing background noise levels as established during site visits to the Project Site. Golder completed these site visits during the daytime period within the Project Site on May 23, 2018 and in the area surrounding the Project Site near the industrial facilities, from publicly accessible areas, on June 13 and 15, 2018. Both steady and impulsive stationary noise sources were considered for each of the industrial facilities may continuously operate 24 hours per day, seven days a week, and that the existing operations are representative of future noise levels. Table 11 below presents the industrial facilities identified in Section 4.8 and indicates which were specifically assessed in the noise prediction modelling.

Table 11: Key Industrial Facilities to be Assessed

ID	Facility Name	Facility Address	Assessed in Noise Prediction Modelling
IN01	Chemtrade	6300 Oldfield Road	Yes
IN02	Washington Mills Electro Minerals Corporation	7780 Stanley Avenue	Yes
IN03	H & L. Tool and Die Ltd.	5955 Don Murie Street	No
IN04	1683063 Ontario Inc. (Milestone Millwork)	6100 Progress Street	No
IN05	Niagara Pattern Limited	6135 Don Murie Street	Yes
IN06	Edscha North America Inc.	5795 Don Murie Street	No
IN07	Brunner Manufacturing & Sales Ltd.	5720 Don Murie Street	Yes
IN08	Tecna-Division of Brunner	5770 Don Murie Street	Yes
IN09	Laurcoat Inc.	8591 Earl Thomas Avenue	Yes
IN10	St. Lawrence Cement Inc. / Dufferin Concrete	5980 Don Murie Street	Yes
IN11	Pumpcrete Corporation	6000 Progress Street	Yes
IN12	Mancuso Chemicals Limited	5635 & 5725 Progress Street	Yes
IN13	Hoco Limited	5720 Progress Street	No
IN14	Barbisan Allmetal Designs	5835 Progress Street	Yes
IN15	Can Mar Manufacturing Inc.	5869 Progress Street	No
IN16	Fencast Industries Ltd	6272 Kister Road	Yes
IN17	Marineland Canada	5680 Don Murie Street	No
IN18	Falls Contracting Inc.	5850 Unit D Don Murie Street	No
IN19	Dyaco Canada Inc.	5955 Don Murie Street	Yes
IN20	Niagara River Trading	6199 Don Murie Street	No
IN21	Gordon Wright Electrical Limited	6255 Don Murie Street	Yes
IN22	Air Liquide Canada Inc.	6090 Don Murie Street	No
IN23	Airwood Vents	6167 Don Murie Street	Yes

ID	Facility Name	Facility Address	Assessed in Noise Prediction Modelling
IN24	International Sew-Right	6190 Don Murie Street	No
IN25	Marine Clean Ltd.	6220 Don Murie Street	No
IN26	Niagara Commercial Coating & Insulation	6260 Don Murie Street	No
IN27	Deflecto Canada	8699 Stanley Avenue	No
IN28	Marineland Canada	8529-8559 Stanley Avenue	No
IN29	Marineland Canada	8455 Stanley Avenue	No
IN30	Batemans Tires	8407 Stanley Avenue	Yes
IN31	Peglow Tool & Die Inc.	8345 Stanley Avenue	No
IN32	Salit Steel	7771 Stanley Avenue	Yes
IN33	L. Wallter & Sons Excavating Ltd.	7527 Stanley Avenue	Yes
IN34	Hangups Sportware	6537 Kister Road	No
IN35	Fastenal	6537 Kister Road	No
IN36	Micron Installations	6501 Kister Road	No
IN37	Niagara RV & Trailer Center	6471 Kister Road	No
IN38	Niagara Bus Wash	6441 Kister Road	No
IN39	T.Hodgson & Co. Ltd.	6411 Kister Road	No
IN40	Davert Tools	5676 Progress Street	Yes
IN41	Niagara Analytical Laboratories	5805 Progress Street	No
IN42	Louver-Lite	6015 Progress Street	No
IN43	Aztec Frames	6025 Progress Street	No
IN44	GC Customs Services Inc.	6045 Progress Street	No
IN45	Niagara Fence Supply	6065 Progress Street	No
IN46	Niagara Fastener Inc.	6095 Progress Street	Yes
IN47	Provincial Design & Fabrication Inc.	6159 Progress Street	No

ID	Facility Name	Facility Address	Assessed in Noise Prediction Modelling
IN48	Spencer ARL	6040 Progress Street	No
IN49	Unit 1 Advanced Cryogenic Services	6100 Progress Street	No
IN50	Lafarge Quality Ready Mix	6224 Progress Street	Yes
IN51	Collins Concessions Ltd.	8621 Earl Thomas Avenue	No
IN52	Factor Forms and Labels	8481 Earl Thomas Avenue	Yes
IN53	Stelfab Niagara Limited	8594 Earl Thomas Avenue	Yes
IN54	Food Roll Sales (Niagara) Ltd.	8464 Earl Thomas Avenue	Yes
IN55	Fred's Concrete	5806 Ramsey Road	No
IN56	Avid Growing Systems	8100 Dorchester Road	Yes
IN57	Palfinger Inc.	7942 Dorchester Road	Yes
IN58	Niagara Moving and Storage	7825 Dorchester Road	No

During the site visit within the Project Site on May 23, 2018, activity from both Chemtrade and Salit Steel were acoustically noticeable at times while the other industrial facilities were not perceived.

The Niagara Falls tourist area is located approximately 2 km northeast of the Project Site. As previously discussed, at times, helicopter activity likely associated with the Niagara Falls tourist area was acoustically noticeable within the Project Site. Other parts of the Niagara Falls tourist area were not acoustically noticeable from within or in the area surrounding the Project Site. The Marineland theme park is located approximately 300 m east of the Project Site and was not observed to be acoustically noticeable from within the Project Site. During one of the three site visits, activity from within Marineland was heard from Stanley Avenue. Based on the site visit observations and distance of Marineland to the Project Site, Marineland was not further assessed.

5.1.1.2 Noise Measurements

In order to help calibrate the predictive noise modelling, Golder carried out attended spot-check noise measurements at various locations within and proximate to the Project Site. Golder conducted these measurements during the daytime period within the Project Site on May 23, 2018 and in the area surrounding the Project Site near the industrial facilities, from publicly accessible areas, on June 15, 2018. The locations where noise measurements were taken are identified on Figure 5. The measured daytime noise levels within the Project Site ranged from 47 dBA to 52 dBA. The noise measurement results, weather conditions and calibration certificates are provided in Appendix B.

5.1.2 Assessment Methodology

Current industry practices involve an assessment of compliance with respect to NPC-300 and an assessment of potential nuisance. The Study focused on the assessment of compliance with respect to NPC-300, however potential nuisance from industrial facilities is discussed qualitatively. The noise predictions for stationary sources, rail traffic and road traffic in the vicinity of the Project Site were carried out using CadnaA software according to ISO 9613 (stationary sources), RLS-90 (road traffic) and FTA/FRA (rail traffic) algorithms respectively. In selecting the CadnaA software, consideration was given to the capabilities of CadnaA in dealing with GIS data, complex topography and built forms and performance in generating noise contours. Noise contours provide a visual representation of the acoustical environment associated with the noise sources in the vicinity of and within the Project Site and are therefore useful in identifying potential noise concerns. Based on past experience, these modelling algorithms for the road and rail traffic sources provide prediction results consistent with actual noise levels and those predicted using the MECP's ORNAMENT, which is the basis of the DOS-based STAMSON modelling software provided by the MECP. The MECP's ORNAMENT was used to verify the CadnaA model with respect to the road traffic surrounding the Project Site. A comparison of the ORNAMENT and RLS-90 calculation results is provided in Appendix C. For the rail source, CadnaA can carry out noise predictions using modelling algorithms from the FTA Manual. The FTA Manual provides methods to be used when predicting railway noise and is a noise prediction model generally recommended by the Canadian Transportation Agency when assessing railway noise.

Due to the industrial facilities surrounding the Project Site and the definition of a Class 4 area presented in Section 3.3.1, it was further investigated whether Class 4 was applicable for certain areas within the Project Site. It is understood at the onset of the official plan amendment and rezoning application process, a pre-consultation meeting with the City was held on August 2, 2018 where it was identified that the Study was to address that Salit Steel may operate as a Class 4 use. Golder assumes this was intended to say that areas within the Project Site impacted by noise from Salit Steel may be classified as Class 4 as per NPC-300. In addition, according to the City meeting minutes PBD-2018-71 from November 13, 2018 included in Appendix A, Salit Steel has committed to meet Class 4 sound level limits at the proposed condominium development located at 7711 Green Vista Gate (Green Vista Gate development).

Therefore, it is Golder's opinion that certain areas of the Project Site should be considered to be designated as Class 4, including areas which directly abut industrial facilities. Golder considered the exclusionary sound level limits for a Class 4 area in the north and east sections of the Project Site (i.e., adjacent to Salit Steel and the Green Vista Gate development) and in the area directly adjacent to Chemtrade (i.e., north of the rail line). The exclusionary sound level limits for a Class 2 area was used for the southwestern section of the Project Site. These classification areas are noted in Figure 6. The option for certain areas of the Project Site to be designated a Class 4 area will require approval from the land use planning authority, the City.

The following are key assumptions considered in the development of the noise prediction modelling for the purposes of this Study:

- Only existing land uses were considered, as observed during the June 2018 site visits.
- The proposed Project design provided by the Project team included land uses (i.e., medium and low density areas). Buildings within the Project Site that were considered in the Study were developed by the Project team and the noise team to assess a potential feasible built form.

- For the purposes of the noise assessment, a terrain dataset within and outside the Project Site was developed based on the SWOOP 2015 elevation contours and terrain provided by Burnside. It was assumed that the terrain within the Project Site will be flattened out with respect to the existing elevation along the perimeter of the Project Site.
- All industrial facilities may operate continuously for 24 hours per day, seven days a week, and the existing operations are representative of future noise levels.
- When information was not provided by industrial facilities, their stationary sources noise emissions were estimated and primarily characterized with a single point source to represent the total noise emissions associated with all the steady noise sources on site. It was assumed these industrial facilities do not have impulsive noise sources. If it was deemed appropriate, based on Golder's experience with a similar type of facility, Golder considered multiple point sources at an industrial facility. The following are the industrial facilities that considered multiple noise sources:
 - Dufferin Ready Mix; and
 - Lafarge Quality Ready Mix.

When applicable, noise emissions were calibrated with the noise measurements described in Section 5.1.1. Appendix D summarizes the data incorporated into the noise prediction modelling for the stationary sources.

- Additional noise data was provided by Chemtrade, Salit Steel and Washington Mills Electro Minerals Corporation (Washington Mills) to further refine the noise emissions of these facilities in the Study. Salit Steel provided Golder with noise modelling contours resulting from their on-site activities in October 2018, including a steady source scenario and multiple impulsive source scenarios. These impulsive source scenarios carried forward in the Study involved nine or more impulses per hour and therefore were compared to the same sound level limits as those considered for steady sources. Chemtrade provided Golder with an AAR prepared in support of their ECA application in July 2013. According to the MECP Access Environment, Chemtrade is now registered with Air Emissions EASR but for the purposes of the Study, Golder considered the AAR provided as it provides more details regarding their operations. Golder developed noise prediction models to represent Salit Steel and Chemtrade, which approximate the noise contours that were provided by Salit Steel and presented in the Chemtrade AAR. Washington Mills provided an Acoustic Assessment Summary Table prepared in support of their ECA in June 2018 which was considered in developing the model considered for the Study. Appendix D summarizes the data incorporated into the noise prediction modelling for the stationary sources.
- The noise contours received from Salit Steel indicated that noise levels may exceed Class 4 sound level limits at the Green Vista Gate development. Therefore, Salit Steel noise sources were mitigated in the model so that they comply with the Class 4 sound level limits at the proposed location of the Green Vista Gate development, as per the November 13, 2018 meeting minutes. Note that the mitigation considered for this modelling involved reducing the sources' sound power levels by the required amount. It did not consider detailed noise control or the feasibility of the mitigation, as that would be the responsibility of Salit Steel.
- On-site noise barriers (i.e., receptor based outdoor noise control measures) were considered in the modelling. The final noise barrier heights were established to meet the evening and/or nighttime sound level limits for Class 2 (i.e., 45 dBA) or Class 4 (i.e., 55 dBA) at a height of 1.5 m (i.e., at an outdoor POR or first floor POW POR), based on the areas as described above.

- Elevated sound level limits due to higher background sound levels were not considered.
- Localized shielding of the conceptual built form was considered. Various woodlots, buildings and structures located in the areas surrounding the Project Site were also considered to provide acoustical attenuation.
- Various ground absorptions were considered in the Project Site, in the surrounding areas and at the industrial facilities.
- Road traffic predictions consider future noise levels in 2031, based on the Transportation Study, Ontario Ministry of Transportation (MTO) or City's datasets. When required, parameters were assumed and confirmed by Burnside.
- Rail traffic in the future will be similar to existing conditions. The rail line is an industrial spur line and will only consist of freight train activity to support the local industries. Rail traffic volumes were based on information received from CP and from site visit observations.
- Audible back-up beepers, which are not considered to be stationary sources by NPC-300, were qualitatively assessed for potential nuisance complaints.
- The potential impact on the environment (i.e., road traffic, rail traffic and stationary sources) of the Riverfront Community located southwest of the Project Site was not included in this Study.
- Building heights, the number of storeys and the corresponding storey heights of the conceptual built form were determined based on discussion with the Project team. The estimated overall building height represents the height from grade to a flat roof. If a peaked roof is considered in the design, the height to the peaked roof may need to be increased. This information is summarized in Table 12.

Land Uses	# of Storeys	Overall Height of Each Storey (m)	Estimated Overall Building Height ¹ (m)
Low Density	2	3.0	6
Medium Density	3 to 4	3.5	11 to 14

Table 12: Conceptual Built Form Building Height Summary

1 Height from grade to a flat roof

5.1.3 Industrial Facilities - Stationary Noise Sources

The following section describes the assessment of steady and impulsive stationary noise sources.

5.1.3.1 Methodology

The key industrial facilities assessed in the noise prediction model are identified in Table 11 in Section 5.1.1.1. A screening assessment was performed to determine which of these industries to carry forward to a detailed modelling assessment due to their potential to exceed the applicable sound level limits on the Project Site. Noise levels were predicted due to steady and impulsive stationary noise sources for the key industrial facilities at representative POR POW and Outdoor PORs within the Project Site. A built form was not included in the screening assessment, hence localized shielding within the Project Site was not considered.

The industrial facilities resulting in a non-compliance status with the MECP's Class 2 area classification within the Project Site were carried forward to a detailed modelling assessment. These were considered the likely most significant industrial facilities surrounding the Project Site for the purposes of this Study.

Once the most significant industrial facilities were established, noise levels in the form of noise contours were predicted due to steady and impulsive stationary noise sources for these industrial facilities, generated at heights of 1.5 m, 4.5 m, 7.5 m, and 10.5 m relative to grade. The Project Site conceptual built form was included, hence localized shielding within the Project Site was considered. Predicted noise levels were compared with Class 2 and Class 4 area exclusionary sound level limits. On-site noise barriers were considered in the modelling. Additional noise control measures are qualitatively discussed in Section 5.1.3.3.

5.1.3.2 Results

The following industrial facilities were found to be in non-compliance with the MECP's exclusionary limits for a Class 2 area in the screening assessment and were considered the most significant industrial facilities surrounding the Project Site:

- Chemtrade (IN01);
- Dufferin Ready Mix (IN10);
- Lafarge Quality Ready Mix (IN50);
- Salit Steel (IN32); and
- Washington Mills (IN02).

Note, if the entire Project Site was designated as a Class 4 area, only Chemtrade and Salit Steel were predicted to result in non-compliance with the MECP Class 4 exclusionary limits based on the methodology considered for the screening assessment.

Detailed noise prediction modelling was carried out for each of the most significant industrial facilities.

Based on the results of the screening assessment, it was determined that noise mitigation measures would be required. The following noise control measures were considered within the Project Site when completing the detailed noise prediction modelling:

- Receptor based outdoor noise control measures
 - Noise barriers and/or berms 3 to 5 m in height
- Receptor based site configuration noise control measures
 - Orientation of buildings and OLAs with respect to noise sources
- Receptor based "on building" noise control measures (Class 4 areas only)
 - Enclosed noise buffers
- Receptor based site construction and architectural noise control measures
 - No noise sensitive spaces on specific facades

Note that sealed windows could be used as a noise control under certain circumstances as defined in NPC-300.

Noise prediction modelling considered the estimated maximum sound levels produced by each of the five industries. Predicted combined maximum noise level contours from the most significant industries are shown in Figures 7 to 10 and identified below. The information provided in the title (i.e. @#.#) represents the height above grade for which the contour corresponds.

- Figure 7 Maximum Noise Levels Resulting from Most Significant Industrial Facilities @ 1.5m
- Figure 8 Maximum Noise Levels Resulting from Most Significant Industrial Facilities @ 4.5m
- Figure 9 Maximum Noise Levels Resulting from Most Significant Industrial Facilities @ 7.5m
- Figure 10 Maximum Noise Levels Resulting from Most Significant Industrial Facilities @ 10.5m

Based on the results of the noise prediction modelling carried out for the most significant industries, Chemtrade and Salit Steel are expected to result in the highest potential noise levels due to their operations onto the Project Site.

A CadnaA sample calculation is provided in Appendix E.

5.1.3.3 Discussion and Noise Mitigation

As presented in Section 5.1.3.2, the following five industrial facilities were identified as potentially being the most significant in the area surrounding the Project Site:

- Salit Steel;
- Chemtrade;
- Dufferin Ready Mix;
- Lafarge Quality Ready Mix; and
- Washington Mills.

As the methodology of this Study relied on estimates and assumptions, further discussion with these industrial facilities is recommended to ensure the actual site specific impacts are assessed allowing the Project team to better develop and implement noise mitigation that is effective, if required. This will include the sharing of noise emissions associated with the industrial facilities and the Project's design and possibly include agreements between all parties regarding the implemented noise mitigation if required.

The following further describes the results and required noise control measures to address each of the most significant industrial facilities. As previously discussed in Section 5.1.2, Golder considered the sound level limits for a Class 4 area in the north and east sections of the Project Site (i.e., adjacent to Salit Steel and the Green Vista Gate development) and in the area directly adjacent to Chemtrade (i.e., north of the rail line). The sound level limits for a Class 2 area was used in the southwestern section of the Project Site (i.e., facing the ready mix facilities).

1784521

Salit Steel

The noise modelling assessment considered a 5 m high noise barrier (or a berm/barrier combination) located along the eastern edge of the Project Site, directly west of the existing woodlot. With this noise barrier and shielding from the conceptual built form, the Class 4 sound level limits (i.e., 55 dBA) due to Salit Steel were met at a grid height of 1.5 m (i.e., at outdoor and ground-floor POW PORs) within the Project Site except a small area bounded by John Daly Way, Thundering Waters Boulevard and Lionshead Avenue (refer to Figure 7). Based on the methodology of this Study, a 5 m high noise barrier within this small area was ineffective. Further investigation to determine whether receptor-based site configuration noise controls (i.e., building configurations) are appropriate in this area to allow for the development of sensitive land uses.

At other heights (i.e., for PORs on storeys two through four), as seen in Figures 8 through 10, there were areas which exceed the Class 4 sound level limits. In these areas the buildings would need to be designed so that there are no PORs along these facades (i.e., balcony/terrace that is more than 4 m deep, or windows or doors to noise sensitive spaces). Enclosed noise buffers can be considered at these locations provided the Class 4 designation is approved. Predicted noise levels from Salit Steel met Class 2 sound level limits in the southwestern section of the Project Site where Class 2 sound level limits were considered.

The noise contours received from Salit Steel indicate that Salit Steel noise sources may be exceeding the Class 2 sound level limits at several existing PORs, including those near the intersection of Stanley Avenue and Ramsey Road and on Deerbrook Street, which are considered to be Class 2 areas. Therefore, the noise prediction modelling was repeated with mitigating Salit Steel noise sources such that the Class 2 sound level limits were met at these existing PORs, which is an expected requirement if Salit Steel were to meet he MECP requirements set out in NPC-300. Note that the mitigation considered for this modelling involved reducing the noise emissions by the required amount to meet the Class 2 sound level limits at these existing PORs. It did not consider detailed noise controls or the review of the feasibility of mitigation, as that would be the responsibility of Salit Steel. The predicted noise contours resulting from this scenario, for which the noise emissions from the other industries and the previously identified noise barrier remained the same, are shown in Figure 11 for a contour height of 4.5 m above grade. These modelling results indicate that if Salit Steel is compliant with the Class 2 sound level limits at existing PORs, the predicted noise levels due to Salit Steel meet the Class 2 sound level limits on the Project Site, and mitigation within the Project Site could be reduced. Golder recommends further discussion with Salit Steel be carried out to assess the actual site-specific noise impacts associated with their operations and possible at-source noise mitigation options. Source-based mitigation could reduce the need for on-site mitigation measures and should be further investigated. As previously discussed, there is a precedence for developers to be involved with source-based mitigation of nearby industrial facilities.

Chemtrade

The noise modelling assessment considered three 3 m high noise barriers (or berm/barrier combinations) facing Chemtrade within the Project Site. With these noise barriers, the Class 4 sound level limits (i.e., 55 dBA) in the areas directly adjacent to Chemtrade and Class 2 sound level limits (i.e., 45 dBA) in the southwest area (i.e., south of the rail line) were met at a grid height of 1.5 m (i.e., at outdoor and ground-floor POW PORs). At subsequent heights (i.e., PORs on storeys two through four), as seen in Figures 8 through 10, there were areas which exceed Class 2 and Class 4 sound level limits. Note that in several areas of the Project Site directly adjacent to Chemtrade there was no built form considered in the modelling.

For the single family dwellings in the low density area south of the rail line, the first row of homes facing Chemtrade would need to be designed so that there are no PORs along these facades (i.e., balcony/terrace that is more than 4 m deep, or windows or doors to noise sensitive spaces) on the second storey facing Chemtrade.

In the areas directly adjacent to Chemtrade where Class 4 sound level limits are exceeded and in the southwest corner of the Project Site where Class 2 sound level limits are exceeded, the buildings would need to be designed so that there are no PORs along these facades (i.e., balcony/terrace that is more than 4 m deep, or windows or doors to noise sensitive spaces). Enclosed noise buffers can be considered in areas where the Class 4 designation is approved.

It is expected that shielding from a built form could reduce the extent of where the sound level limits are exceeded, similar to other areas within the Project Site.

Golder recommends further discussion with Chemtrade be carried out to assess the actual site-specific noise impacts associated with their operations and possible at-source noise mitigation options. Source-based mitigation could reduce the need for on-site mitigation measures and should be further investigated. As previously discussed, there is a precedence for developers to be involved with source-based mitigation of nearby industrial facilities.

Ready Mix Facilities

The noise modelling assessment considered three noise barriers (or berm/barrier combinations) 3 m to 5 m in height within the southwestern portion of the Project Site, facing the ready mix facilities, with the intent of meeting Class 2 sound level limits at a grid height of 1.5 m (i.e., at outdoor and ground-floor POW PORs). There is an exceedance of Class 2 sound level limits in the medium density area in the southwest corner of the Project Site; note within this area there was no built form considered in the modelling. It is expected that shielding from a built form in this area could remove or reduce the Class 2 sound level limits. In these areas the buildings would need to be designed so that there are no PORs along these facades (i.e., balcony/terrace that is more than 4 m deep, or windows or doors to noise sensitive spaces) facing the ready mix facilities.

Based on Golder's experiences with ready mix facilities, it is assumed that a reasonable level of effort could be considered to mitigate significant noise sources associated with the operations at the ready mix facilities such that they could achieve compliance with Class 2 sound level limits at the Project Site and potentially reduce or eliminate the use of on-site noise barriers. Typical at-source noise controls include noise barriers, silencers, operational changes, replacing/upgrading process equipment with quieter units and improved building construction to increase noise attenuation. As previously discussed, there is a precedence for developers to be involved with source-based mitigation of nearby industrial facilities. Note that the noise emissions from the ready mix facilities considered for the Study were based on Golder's experience with similar facilities; if noise data or additional information is made available, the noise emissions and operational parameters (i.e., daytime, evening, and nighttime operations, number of expected trucks per hour) could be refined and the need for noise barriers or other mitigation measures can be revisited.

Washington Mills

Washington Mills provided information regarding the noise emissions associated with their operations. According to the information provided, their AAR carried out noise predictions for two different stationary source operations (i.e. Steady (dBA) and Deep Tap (dBA)) at a single POR located along the eastern edge of the Project Site, with noise levels reaching up to 47 dBA, which is below the Class 4 sound level limits considered in the Study for that area of the Project Site.

Golder recommends further discussion with Washington Mills to assess the actual site-specific noise impacts associated with their operations within the entire Project Site. If required, possible noise mitigation options should be discussed that will consider the entire Project Site.

Potential Nuisance Complaints

As previously mentioned, having an up-to-date ECA/EASR or complying with NPC-300 sound level limits may not prevent nuisance complaints associated with stationary or non-stationary sources related to industrial facilities. For example, NPC-300 does not consider back-up beepers as stationary sources. During the site visits, audible back-up beepers (emitting a constant, intermittent tone) were acoustically noticeable at both of the ready mix facilities. Back-up beepers were also acoustically noticeable near the midpoint of the southern edge of the Project Site, likely due to these ready mix facilities. Back-up beepers are not considered stationary sources according to NPC-300 but are known to result in nuisance noise complaints. Options to minimize any nuisance complaints include the use of "broadband" alarms (i.e., multiple frequencies) and other technologies that are permitted by the regulating authorities. Golder recommends further discussion with the nearby industrial facilities regarding possible measures to reduce the potential for nuisance complaints.

5.1.4 Transportation Sources

The following section describes the assessment of transportation noise sources, road and rail.

5.1.4.1 Methodology

The future (2031) noise levels due to road traffic were established using projected 2031 peak hour turning count breakdowns from the Transportation Study or, for roads not included in the Transportation Study, existing traffic volumes provided as AADT values from the City or the MTO along various roads surrounding the Project Site. Where peak hour turning count breakdowns were provided, they were used to determine AADTs by assuming peak hour traffic was 10% of total AADT. The daytime and nighttime period percentages were assumed based on the ORNAMENT calculation methodology. To calculate the future AADT volumes when 2031 volumes were not available, a growth rate of 2% was assumed, based on the document "Niagara Falls Guidelines for the Preparation of Transportation Impact Studies and Site Plan Review". The percentage of medium and heavy trucks was based on existing traffic data provided by Burnside and the "Adaptation and Verification of AASHTO Pavement Design Guide for Ontario Conditions – Final Report" (AASHTO Guide), which provides medium and heavy truck percentages based on road classification. These assumptions were confirmed by Burnside. A summary of the road traffic data is provided below in Table 13.

Table 13: Summary of Existing and Future Road Traffic Data

Road Segment	AADT (2031)	Speed Limit (km/hr)	% Automobile / Medium Truck / Heavy Truck	Daytime / Nighttime Breakdown
Existing Roads				
McLeod Rd from Montrose Rd to Oakwood Drive	36791	50	88 / 4 / 8	90 / 10
McLeod Rd from Oakwood Drive to Dorchester Road	33496	50	88 / 4 / 8	90 / 10
McLeod Rd from Dorchester Road to Drummond Rd	19440	50	98 / 1 / 1	90 / 10
Marineland Pkway from Drummond Rd to Stanley Ave N	14960	50	97 / 0 / 2	90 / 10
Marineland Pkway from Stanley Ave N to Stanley Ave S	19050	50	97 / 1 / 2	90 / 10
Marineland Pkway east of Stanley Ave S	11180	50	94 / 0 / 6	90 / 10
Drummond Rd N	12970	50	99 / 0 / 0	90 / 10
Drummond Rd S	12250	50	99 / 0 / 1	90 / 10
Stanley Ave N	8670	50	96 / 1 / 3	90 / 10
Stanley Ave S from Marineland Pkway to Ramsey Rd	9040	60	96 / 2 / 2	90 / 10
Stanley Ave S from Ramsey Rd to Progress St	9680	60	97 / 1 / 2	90 / 10
Stanley Ave S from Progress St to Don Murie St	9250	60	97 / 1 / 2	90 / 10
Stanley Ave S from Don Murie St to Chippawa Pkway	10180	60	93 / 1 / 5	90 / 10
Stanley Ave S from Chippawa Pkway to Lyons Creek	12440	60	95 / 1 / 4	90 / 10
Ramsey Rd from Oldfield Rd Extension to Stanley Ave	1580	50	91 / 4 / 4	90 / 10
Ramsey Rd from Drummond Rd Extension to Oldfield Rd Extension	1170	50	91 / 4 / 4	90 / 10
Progress St	1380	50	97 / 1 / 2	90 / 10

Road Segment	AADT (2031)	Speed Limit (km/hr)	% Automobile / Medium Truck / Heavy Truck	Daytime / Nighttime Breakdown
Don Murie St	1940	50	88 / 2 / 9	90 / 10
Chippawa Pkway W	11560	60	97 / 0 / 3	90 / 10
Chippawa Pkway E	730	60	98 / 0 / 2	90 / 10
Lyons Creek W	15560	70	96 / 1 / 3	90 / 10
Lyons Creek E	6890	60	97 / 2 / 1	90 / 10
Chippawa Creek Rd from Thorold Townline Rd to Montrose Rd	2471	80	94 / 5 / 1	90 / 10
Montrose Rd from Lundy's Lane to McLeod Road	12218	50	88 / 4 / 8	90 / 10
Montrose Rd from McLeod Road to Canadian Drive	6040	50	88 / 4 / 8	90 / 10
Montrose Rd from Canadian Drive to Chippawa Creek Rd	7962	60	88 / 4 / 8	90 / 10
Montrose Rd from Chippawa Creek Rd to Lyons Creek Rd	8511	80	88 / 4 / 8	90 / 10
QEW from McLeod Road to Lyons Creek Rd	49393	100	80 / 5 / 15	85 / 15
Future Roads within the Project Site		·	•	
Drummond Rd Extension from Oldfield Rd to Street F/C	4310	50	99 / 0 / 1	90 / 10
Drummond Rd Extension from Street F/C to Ramsey Rd	650	50	99 / 0 / 1	90 / 10
Street F	2270	50	99 / 0 / 1	90 / 10
Street C	1190	50	99 / 0 / 1	90 / 10
Oldfield Rd Extension from Drummond Rd to Street C	2010	50	99 / 0 / 1	90 / 10
Oldfield Rd Extension from Street C to Ramsey Rd Davtime (07:00 – 23:00), Night-time (23:00 – 07:00)	410	50	99 / 0 / 1	90 / 10

Daytime (07:00 – 23:00), Night-time (23:00 – 07:00)

1784521

.

The rail line is considered an industrial spur rail line and consists of freight train activity to support the local industries. As previously discussed, existing rail traffic was based on information from CP and site observations. The information from CP indicated that rail traffic only occurs during the nighttime but based on site observations one daytime train trip has been conservatively included in the Study. The future rail traffic has been assumed to be the same as existing conditions. According to CP, whistle noise at existing grade crossings along the CP Montrose Subdivision is prohibited. The Project is introducing two at-grade rail crossings (i.e. public crossing) and it is assumed that whistle noise will be prohibited at these crossings as well. A summary of the rail traffic data used for this Study is provided below in Table 14.

Table 14: Summary of Rail Traffic Data

Type of Train	Number of Trains Day / Night ¹	Number of Locomotives per Train ²	Number of Railcars per Train ¹	Maximum Speed (km/hr)
Freight along CP Montrose Subdivision	1/2	2	20	40

1 The number of trains and locomotives were adjusted accordingly to match the reference times applied in CadnaA

2 Locomotive Length = 23 m, Railcar length = 29 m

5.1.4.2 Results

The predicted maximum daytime and nighttime noise levels at the facades of the conceptual built form within the Project Site are summarized in Table 15. Predicted noise level contours for Road and Rail combined at a height of 1.5 m above grade are shown in Figures 12 and 13.

Land Use	Storey		aximum vel (dBA)		aximum evel (dBA)	Maximu	Rail (POW) um Noise I (dBA)	Road + Rail (OLA) Maximum Noise Level (dBA)
		Daytime	Nighttime	Daytime	Nighttime	Daytime	Nighttime	Daytime
Low	First	58	51	54	61	58	61	58
Density	Second	59	52	54	61	59	61	_
Medium	First	54	48	57	63	58	63	58
Density	Second	55	49	57	63	58	63	_
	Third	55	49	57	63	58	63	_
	Fourth	55	48	56	62	56	62	_

Daytime (07:00 - 23:00), Night-time (23:00 - 07:00), POW - Plane of Window, POR - Point of Reception, OLA - Outdoor Living Area.

Figures 12 and 13 and Table 15 indicate the following:

- Predicted noise levels from road and rail traffic in some areas of the Project Site exceeded 55 dBA during the daytime and 60 dBA during the nighttime.
 - For daytime POW noise levels between 55 dBA and 65 dBA and for nighttime POW noise levels between 50 dBA and 60 dBA, it is recommended that there is a forced air system with provisions for installation of air-conditioning.
 - For nighttime POW noise levels above 60 dBA, air-conditioning is mandatory to allow windows to remain closed.
 - For daytime noise levels predicted in OLAs between 55 dBA and 60 dBA, mitigation is not required but owners/tenants must be warned about excessive noise in OLAs via a warning clause.
 - It is expected that the final Project design will meet the CP requirement of a 15 m setback distance between dwellings and the railway right-of-way. Based on the contours presented in Figures 12 and 13, it is expected that maximum predicted noise levels from road and rail traffic 15 m from the railway rightof-way be reduced to approximately 59 dBA. The maximum predicted noise levels and ventilation requirements should be revisited during detailed design.
- The maximum predicted noise levels due to road traffic during the daytime and nighttime were below 65 dBA and 60 dBA respectively for all buildings within the Project Site.
 - For road traffic, if the outdoor daytime and nighttime sound levels at the POW are below 65 dBA and 60 dBA respectively, NPC-300 does not require acoustical performance specifications of building components. It is Golder's experience that building components which satisfy the Ontario Building Code (OBC) are expected to provide a sufficient amount of attenuation that indoor sound level limits are met. This should be verified in the detailed design stage.
- The maximum predicted daytime noise levels due to rail traffic were below 60 dBA within the Project Site.
 - For rail traffic, if the outdoor daytime sound levels at the POW are below 60 dBA, NPC-300 does not require acoustical performance specifications of building components. It is Golder's experience that building components which satisfy the OBC are expected to provide a sufficient amount of attenuation that indoor sound level limits are met. This should be verified in the detailed design stage.
- The maximum predicted nighttime noise levels due to rail traffic exceeded 60 dBA during the nighttime period within the Project Site.
 - For rail traffic, if the outdoor nighttime sound level at the POW exceeds 55 dBA, building components should be designed so that the indoor sound levels comply with the sound level limits.
 - As previously mentioned, it is expected that the final Project design will meet the CP requirement of a 15 m setback distance between dwellings and the railway right-of-way. Based on the contours presented in Figures 12 and 13, it is expected that maximum predicted noise levels from rail traffic 15 m from the railway right-of-way be reduced to approximately 59 dBA. The maximum predicted noise levels and required acoustical performance of building components should be revisited during detailed design.

The 24 hour rail traffic noise is greater than 60 dBA and the first row of dwellings is within 100 metres of the tracks, therefore exterior walls of the first row of dwellings next to railway tracks are to be built to a minimum of brick veneer or masonry equivalent construction, from the foundation to the rafters.

The results above indicate that some building components will need to be designed such that indoor sound levels comply with the sound level limits due to rail traffic. With the Project Site not having a built form yet completed, detailed suite layouts are not yet available and therefore Golder recommends that minimum acoustic performance (i.e., STC) of building components be specified during detailed design. During detailed design the appropriate mitigation measures through suite layouts and the use of building materials can be used to mitigate indoor sound levels.

5.2 Impact of the Project on the Environment

The Project Site could potentially impact the noise environment in two different manners:

- 1) Noise emission due to the increase in automobile traffic of the future residents; and
- 2) Noise from stationary sources such as air handling units associated with the Project.

In addition, operation of certain types of equipment such as emergency generator testing may require an ECA (Air & Noise) in accordance with NPC-300. At the time of this Study, no information regarding potential stationary sources related to the Project is available. Therefore, the following investigation considers the potential impact of the Project Site on the environment including applicable criteria and will be confirmed during detailed design.

5.2.1 Criteria

5.2.1.1 Stationary Sources

For stationary sources associated with Project Site, MECP guideline publication NPC-300 is considered applicable. The areas surrounding the Project Site are best defined as Class 2 or Class 4 (i.e., Green Vista Gate development) as per NPC-300. As described in Section 3.3.1, in assessing stationary noise sources within the Project Site to nearby PORs, the MECP has established exclusionary POW and Outdoor sound level limits for Class 2 and Class 4 areas. At the time of preparing this Study, the exclusionary limits for a Class 2 and Class 4 area are considered appropriate for the Project Site.

5.2.1.2 Traffic Noise

NPC-300 does not provide specific noise related criteria for potential road traffic noise impacts of the Project on the environment. The MECP (formally the Ministry of Environment – MOE) and Ministry of Transportation (MTO) document 'A Protocol for Dealing with Noise Concerns During the Preparation, Review, and Evaluation of Provincial Highways Environmental Assessments' (MOE/MTO Noise Protocol) provides requirements for noise mitigation relating to the construction of new or the expansion of existing roadways in Ontario. The MOE/MTO Noise Protocol is considered here to provide context to potential future impacts of traffic due to the Project on the environment.

Noise assessments typically consider average noise levels over a given averaging period. An averaging period is not clearly stated in the MOE/MTO Noise Protocol but is generally considered over the daytime period. The averaging period considered was a 16-hour daytime average between 07:00 and 23:00 based on other guidance documents. The MOE/MTO Noise Protocol states that the objective for outdoor sound levels is either 55 dBA or the existing ambient. If noise increases above ambient by more than 5 dBA, mitigation should be investigated. If

mitigation is required, it should achieve a minimum of 5 dBA of attenuation, if administratively, economically, and technically feasible.

5.2.2 Assessment

5.2.2.1 Stationary Noise Source

The stationary noise sources associated with the Project Site may include underground parking exhaust fans, air handling units, cooling towers, intake and discharge louvers of mechanical rooms and emergency generators. These stationary noise sources are typically steady and varying sounds. If these sources are installed on the Project Site, they will need to comply with NPC-300 sound level limits.

5.2.2.2 Road Traffic Noise

The Transportation Study outlines a potential future road network design as well as potential future impacts of the Project on road traffic volumes on existing roads in the vicinity of the Project Site. The AADTs on the roads in the vicinity of the Project Site are predicted to increase by up to 15%, with the exception of Drummond Road, south of McLeod Road, and Ramsey Road. A semi-quantitative assessment was conducted to estimate the impacts of road traffic on these roads.

Along Drummond Road, the 2031 AADT values are expected to increase from 6,420 to 12,250 with the addition of the Project (i.e., a 91% increase). This results in a predicted change in noise level at existing dwellings along Drummond Road of approximately 3 dB, from 56 dBA to 59 dBA. The predicted noise level is above the MOE/MTO Noise Protocol objective noise level of 55 dBA, but the change is less than or equal to 5 dB and therefore mitigation would not be required.

Along Ramsey Road, the 2031 AADT values are expected to increase from 520 to 1,580 with the addition of the Project (i.e., a 204% increase). This results in a predicted change in noise level at existing dwellings along Ramsey Road of approximately 5 dB, from 45 dBA to 50 dBA. The predicted noise level is below the MOE/MTO Noise Protocol objective noise level of 55 dBA and the change is less than or equal to 5 dB and therefore mitigation would not be required.

Based on this assessment, it is expected that the other roads in the vicinity of the Project Site will meet the MOE/MTO Noise Protocol. Golder recommends the assessment of traffic noise due to the Project be reviewed when the Transportation Study is finalized.

5.3 Impact of the Project on Itself

The assessment of the potential impact of the Project onto itself considered the potential impact of stationary noise associated with the Project and the increased road traffic due to the Project onto onsite sensitive receptors. Since there is no built form or detailed suite layouts, the following provides a qualitative discussion of best practices to be considered. This includes noise and vibration transmission between suites, mechanical rooms and other areas such as indoor amenity areas.

The OBC requires that every dwelling unit within a residential building be separated by a partition with the following STC requirements:

- Suite/Suite Wall or Floor STC-50
- Suite/Elevator Hoist-way or Refuse Chute STC-55

There are also some best practice guidelines for indoor sound levels from electro-mechanical equipment. American Society of Heating, Refrigeration and Air-conditioning Engineers (ASHRAE) suggest the acceptable background levels in terms of Noise Criterion (NC) levels. It is suggested that the Project team follow these guidelines at a minimum, which are summarized below:

- Living Rooms, Dining Rooms NC-30 to NC-35
- Bedrooms NC-25 to NC-30

During detailed design, Golder recommends a quantitative assessment be carried out.

The following are some additional best practices that should be considered in view of increasing acoustical comfort to future residents within the Project Site but will need to be quantitatively assessed during detailed design:

- The outdoor noise emissions from electro-mechanical equipment at the nearest residential or amenity area shall not exceed applicable limits. Noise controls such as silencers/enclosures may be required in some cases to achieve this limit.
- For multi-tenant buildings
 - Positive door closers should be considered to minimize the impulse noise associated with slamming doors that are adjacent to residential dwellings and amenity areas.
 - A suspended drywall ceiling will likely be required for the mechanical spaces located below dwelling units.
 - Similarly, a suspended drywall ceiling will likely be required for suites that are located below mechanical rooms.
 - A floating floor may be required for elevated noise level mechanical rooms (e.g., a chiller room or generator room) that are located above dwelling units.
 - In order to minimize impact noise, the entire run of the garbage chute should be straight with a required thickness of insulation around its perimeter.
 - Pipe riser spaces should be separated from suites with a wall construction providing a minimum STC-50.
 - All pipes greater than 3-inch in diameter should be vibration isolated from all walls and floors. Depending on the equipment to which they are connected to, first few supporting points of these pipes may also be required to support on resilient hangers with a neoprene element in series.
 - An enlarged sleeve penetration should be considered to all pipe penetrations through the walls or floors. Mechanical contact between the structure and pipe generally transfer vibration to the structure and may produce audible noise in some cases. All pipes should also be centered in sleeves, stuffed with insulation and sealed on both sides with non-hardening acoustic caulking. Neoprene-metal-neoprene pads should be considered for the pipe anchors at the floor penetration.
 - Vibration isolation should be considered for all mechanical equipment including but not limited to fans, pumps, chillers, standby generators and cooling towers.
- MECP ECAs may be required for stationary sources such as a standby generator or other mechanical/electrical equipment.

6.0 **VIBRATION**

6.1 Assessment Methodology

As noted in Section 4.8, based on this list of facility locations, available information, and observations during the Survey, vibration levels were not perceived from any of the industrial facilities. The RAC Railway Guidelines recommends a vibration assessment be carried out when the new residential development is 75 m from the rail line right-of-way (ROW). According to the proposed development site layout plan provided by the Project team, a vibration assessment will be required. The vibration assessment consisted of the CP Montrose Subdivision industrial spur rail line that runs through the Project Site due to freight train pass-bys. Once a built form is finalized during detailed design which is expected to satisfy the CP requirement of a 15 m setback distance between dwellings and the rail line ROW, an updated vibration assessment should be completed.

Vibration data associated with rail traffic was measured to establish existing vibration levels within the Project Site. Vibration measurements were collected for approximately one week at several locations along the rail line within the Project Site to determine the potential vibration impact and identify the need for mitigation if required. A review of the *General Vibration Assessment* presented in the FTA Manual was also carried out as part of the vibration assessment.

The vibration assessment for the purposes of this Study has not taken into consideration any potential rail traffic growth including other developments in the area (i.e., Riverfront Community).

Applicable Vibration Limit

As noted in Section 3.4, the RAC Railway Guidelines specify a vibration limit for a residential receptor, expressed in velocity, is 0.14 mm/s rms, with a 1 second time averaging constant, from 4 to 200 Hz.

Vibration Measurements

Golder personnel measured vibration levels at five locations along the rail line within the Project Site from June 14 to 26, 2018. The measurements were unattended, but audio and time-lapse video were recorded to identify when train pass-bys occurred since their schedule was unknown. Ground borne vibration due to freight train pass-bys were taken on the surface at the ROW edge and 30 m or 60 m from the ROW, depending on the location. These locations were selected based on the information available at the time of the field program; buildings were expected to be located as close as approximately 30 m from the ROW. The locations of the vibration measurements are presented in Figure 5.

6.2 Results

During the measurement period, a total of eight freight train pass-bys were measured. However, measurements were not recorded during each event at all of the measurement locations. The measured vibration levels at 60 m were below 0.14 mm/s, at 30 m the measured levels approached and exceeded 0.14 mm/s. Therefore, preliminary results indicate the vibration levels could exceed the RAC Railway Guidelines vibration limit of 0.14 mm/s.

To supplement the vibration measurements, Golder carried out a review of the *General Vibration Assessment* presented in the FTA Manual. The FTA Manual vibration assessment methodology is primarily for rail transit projects but has been used for freight trains. According to the FTA Manual, a Category 2 designation (i.e., residences) best describes the Project Site with existing rail traffic events considered to be infrequent (i.e., fewer than 30 events per day) for both the locomotive and railcar, resulting in a Ground-Borne Vibration limit of 80 VdB. CP requires a 15 m setback distance between the rail line ROW and the nearest dwelling. The final built form will consider the setback distance of 15 m. According to Figure 6-4 in the FTA Manual and a speed adjustment (Equation 6-4) to 25 mph (i.e., 40 km/hr), the maximum allowable speed and 15 mph (i.e., 24 km/hr), the normal speed, the expected vibration levels due to freight train traffic at the 15 m setback will range approximately 73 to 78 VdB (re 1 micro-inch/second), which results in either meeting and/or exceeding the RAC Railway Guidelines (i.e., 0.14 mm/s \approx 75 VdB) or FTA Manual (i.e., 80 VdB). However, depending on how additional adjustments from the FTA Manual are applied (i.e., source, path or receiver adjustments), it is possible for the vibration levels to be below or above the FTA Manual vibration limit.

Based on the preliminary vibration results, Golder recommends an updated vibration assessment be completed during detail design when a built form is finalized. If vibration mitigation controls are determined to be required to assist in achieving compliance with applicable vibration guidelines they will depend on the overall building design and building layout within the Project Site, but may include; discussions with all stakeholders (i.e. Industry, CP and existing residences) to identify and capture as many concerns and issues as possible, increase setback distances by locating and designing residential layouts that further increase the separation distance from vibration sources, or isolating building foundation and/or columns using rubber/engineered pads. Typically, vibration mitigation is most effective when implemented at either the vibration source or at the POR. The feasibility of implementing and the responsibility, including maintenance, of any vibration mitigation controls will need to be confirmed, typically in the detailed vibration study. A detailed vibration study will be required as the Project progresses into detailed design.

7.0 CONCLUSIONS AND RECOMMENDATIONS

Golder Associates Ltd. was retained by Invest Group to carry out a Noise and Vibration Feasibility Study (the Study) for the proposed Niagara Village residential development located at the existing Thundering Waters Golf Course (the Project) in the City of Niagara Falls. The Project Site is currently an active golf course zoned for open space, surrounded by various land uses that include industrial, commercial, residential and tourist. The Project is currently in the pre-planning visioning stage and the purpose of this Study is to support the Project's official plan amendment application and rezoning application. This Study is multifaceted and considers the following:

- The potential impact of the environment on the Project;
- The potential impact of the Project on the environment; and
- The potential impact of the Project on itself.

Based upon the results presented in this Study, the following has been concluded:

- This Study focused on the estimated influence areas on the noise sensitive land uses within the Project Site from surrounding industrial land uses using NPC-300. This assisted in better identifying potential conflicts that are likely to exist as opposed to limiting an assessment to Guideline D6, which is considered more as a screening tool and does not represent definitive results. This will allow the Project team to design a more feasible Project and better develop and implement noise mitigation, if required. Sufficient detailed information regarding noise and vibration emissions from all of the surrounding industrial land uses was not readily available at this time of this Study and therefore additional detailed noise assessments are recommended. Based on the results of the Study, the impacts on the proposed development can be mitigated during the site planning and detailed design phase of the development.
- It is expected this Study will be used in future discussions with the City to review the feasibility of the Project with respect to noise and vibration, including deciding on the framework to be applied to support the land use planning process.
- At the time of preparing this Study, it is considered that the Project Site is comprised of areas best classified as Class 2 and Class 4 as per NPC-300, as another nearby development was recently identified by the City as a Class 4 area. The option for certain areas within the Project Site to be designated a Class 4 area will require approval from the land use planning authority, the City.
- This Study assessed the feasibility of introducing noise sensitive land uses in an area surrounded by existing industrial facilities, road traffic and rail traffic by applying NPC-300 guidelines. To minimize the potential noise and vibration impacts as identified in this Study, the recommendations further discussed in this section should be considered.
- Based upon the information used in this Study, observations during field reconnaissance and the prediction modelling results, there are several industrial facilities that may result in a non-compliance with MECP noise limits with the introduction of this Project into the area. It is anticipated that this Project can be designed so that the industrial facilities can operate in compliance with relevant regulations at PORs within the Project, provided the recommendations further discussed below are implemented.

- It is expected, based on other residential developments in areas with higher road and rail traffic volumes, potential noise impacts due to road and rail traffic can be mitigated through effective acoustic design of the Project. However, in the absence of a built form and specific design details of the buildings on the Project Site, the effectiveness of the acoustic design will need to be verified and confirmed through a detailed noise assessment.
- The Project Site is susceptible to vibration impacts due to the CP Montrose Subdivision rail line. It is expected that the final Project design will satisfy the minimum setback distance of 15 m between the rail line ROW and a dwelling. Similar to noise, it is expected based on other developments adjacent to rail lines that vibration levels could be mitigated through effective design of the Project. This will need to be verified and confirmed through a detailed vibration assessment.

Based on the results of this Study, introducing the Project Site may be possible provided the following is considered:

- Discussions with the surrounding existing industrial facilities need to continue so detailed information regarding noise and vibration emissions associated with their operations is shared and considered to verify the Project does not impact their ability to operate in compliance with applicable limits. The Study estimated the noise emissions for key existing industrial facilities and it is best that the actual site-specific impacts be assessed.
- More detailed noise assessments of the Project and the surrounding existing industrial facilities will need to be carried out, and if required, include mitigation measures to address noise levels as required by NPC-300. The implementation and/or maintenance of the noise mitigation measures may result in the need of an agreement between the Project (i.e., proponent of the new noise sensitive land use), the owner of the noise source (i.e. exiting industrial facility) and the City to deal with potential concerns and conflicts. These agreements may include arrangements to implement a combination of at-source mitigation measures at the industrial facilities, and at-receptor mitigation measures on the Project Site.
- To address any potential noise complaints in the future including any perceived noise concerns, it is recommended that the discussions required between the Project team, key existing industrial facilities and the City include the development of a mechanism to deal with potential future complaints.
- More detailed noise and vibration assessment will need to be carried out during detailed design. This should include additional vibration measurements be taken, including below grade of the closest building facades to the CP Montrose Subdivision. It is recommended the Project team continues to be in contact with CP as the Project design progresses.
- Golder recommends during detailed design and any updates to the Study, aircraft activity from the tourist area be reviewed and determined whether it requires further assessment.
- As information regarding the Riverfront Community becomes available, this Study should be reviewed and updated accordingly.

- Using the information currently provided by the Project team and nearby industrial facilities and assumptions described in this Study, the following describes the on-site recommendations such that predicted noise levels in the north and east sections of the Project Site (i.e., adjacent to Salit Steel and the Green Vista Gate development) and the areas directly adjacent to Chemtrade (i.e., north of the rail line) comply with Class 4 sound level limits and the predicted noise levels in the southwestern section of the Project Site comply with Class 2 sound level limits:
 - in the north and east sections of the Project Site
 - a 5 m high noise barrier (or berm/barrier combination) along the eastern edge of the Project Site, directly west of the existing woodlot will be needed;
 - certain buildings will need to be designed so that there are no PORs (i.e., balcony/terrace that is more than 4 m deep, or windows or doors to noise sensitive spaces) along facades in certain areas.
 Enclosed noise buffers can be considered at locations provided the Class 4 designation is approved;
 - in the areas of the Project Site directly adjacent to Chemtrade
 - two 3 m high noise barriers (or berm/barrier combinations) facing Chemtrade will be needed;
 - certain buildings will need to be designed so that there are no PORs (i.e., balcony/terrace that is more than 4 m deep, or windows or doors to noise sensitive spaces) along facades in certain areas.
 Enclosed noise buffers can be considered at locations provided the Class 4 designation is approved;
 - in the southwest section of the Project Site (south of the rail line)
 - 3 m high noise barrier (or berm/barrier combination) facing Chemtrade and the rail line will be needed;
 - 3 to 5 m high noise barriers (or berm/barrier combination) facing the ready mix facilities will be needed;
 - the first row of low density homes facing Chemtrade will need to be designed so that there are no PORs (i.e., balcony/terrace that is more than 4 m deep, or windows or doors to noise sensitive spaces) on the second storey of the facade facing Chemtrade;
 - in the medium density area in the southwest corner of the Project Site, certain buildings will need to be designed so that there are no PORs (i.e., balcony/terrace that is more than 4 m deep, or windows or doors to noise sensitive spaces) along facades in certain areas where the Class 2 sound level limit are exceeded;
 - The assessment of transportation sources indicate that some building components will need to be designed such that indoor sound levels comply with the sound level limits due to rail traffic, the installation of air-conditioning should be considered, and warning clauses may be required. With the Project Site not having a built form yet completed, Golder recommends that further investigation be completed during detailed design.

- Warning clauses for stationary sources may identify a potential concern due to the proximity of a facility. Golder recommends warning clauses be included in the sale/rental/lease agreements as they are an important factor of the overall noise mitigation plan for any proposed development, but it does not ensure that noise complaints will not occur.
- Warning clauses to notify a Class 4 area are recommended if a Class 4 area designation is approved for certain areas of the Project Site. In addition, industrial facilities should be notified and provided formal documentation of the Class 4 area approval to supplement their ECA/EASR.
- Once the built form is finalized, the above on-site mitigation and design of building components may be further refined.
- If additional information is received from the industrial facilities, the above on-site mitigation may be further refined.
- Source-based mitigation could reduce the need for on-site mitigation measures and should be further investigated.
- The locations of the Class 2 and Class 4 areas approved by the City will impact the level of mitigation required.

Signature Page

Golder Associates Ltd.

Stepa Cial

Stefan Cicak, P.Eng Acoustic, Noise and Vibration Engineer

SD/SC/JT/ng

Joe Tomaselli, P.Eng Associate/Acoustic, Noise and Vibration Engineer

Golder and the G logo are trademarks of Golder Associates Corporation

https://golderassociates.sharepoint.com/sites/16253g/technical work/noise and vibration/report/final mar2020/1784512-r-rev0 19mar2020 niagara village development preliminary noise report.docx

8.0 **REFERENCES**

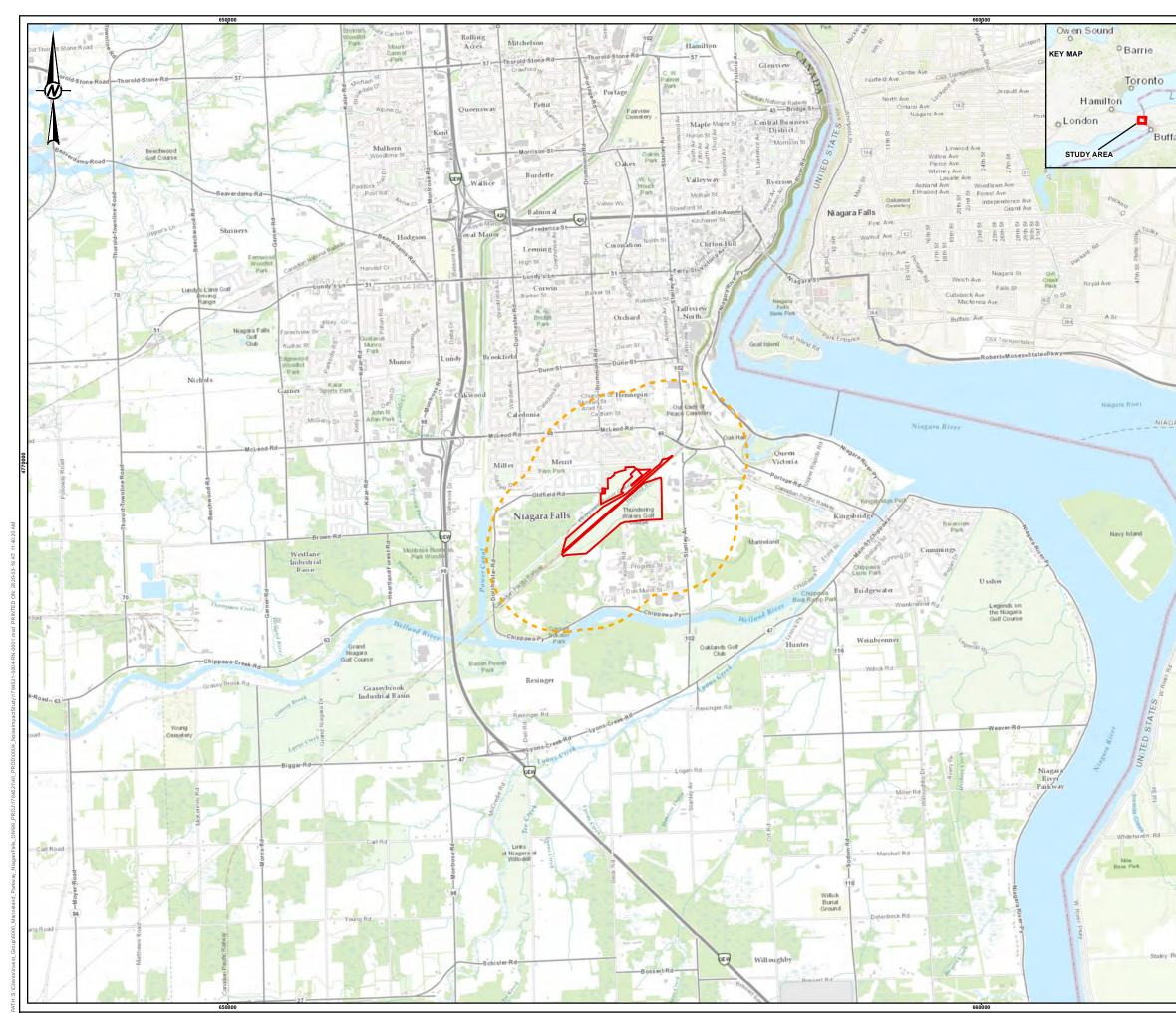
Arcadis Canada Inc (Arcadis). Sensitive Land Use Study (Air Quality) in Support of Planning Applications for Potential Residential Development – Thundering Waters Golf Course and Adjacent Lands. October 2016.

International Organization for Standardization (ISO). 1993. *ISO 9613-1:1993. Acoustics -- Attenuation of sound during propagation outdoors -- Part 1: Calculation of the absorption of sound by the atmosphere*. June 1993.

ISO. 1996. ISO 9613-2:1996. Acoustics -- Attenuation of sound during propagation outdoors -- Part 2: General method of calculation. December 1996.

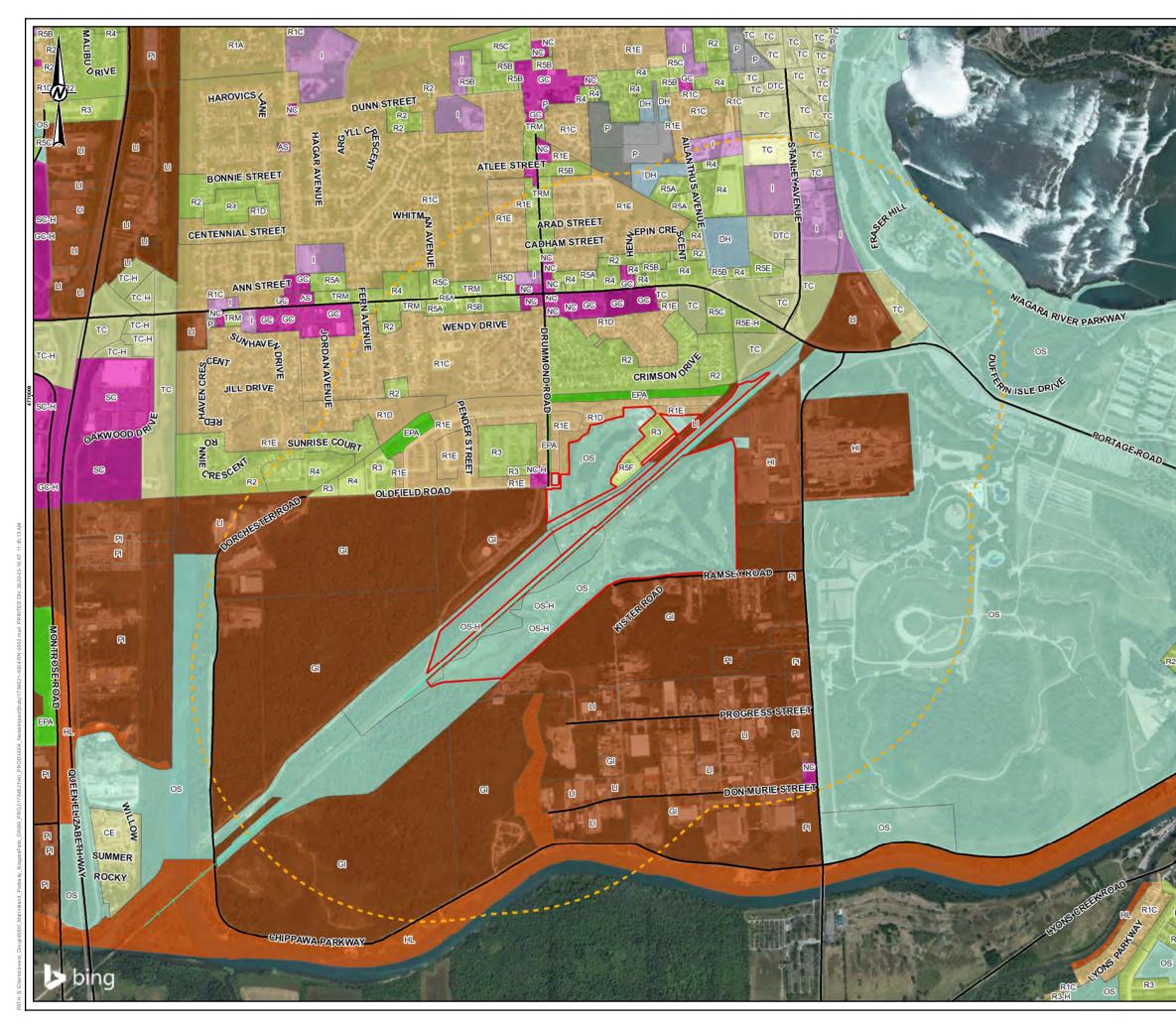
Ontario Ministry of the Environment, Conservation and Parks (MECP). 2013. *Environmental Noise Guideline Stationary and Transportation Sources – Approval and Planning, Publication NPC 300 (NPC 300)*. Dated August 2013. PIBS 9588e.

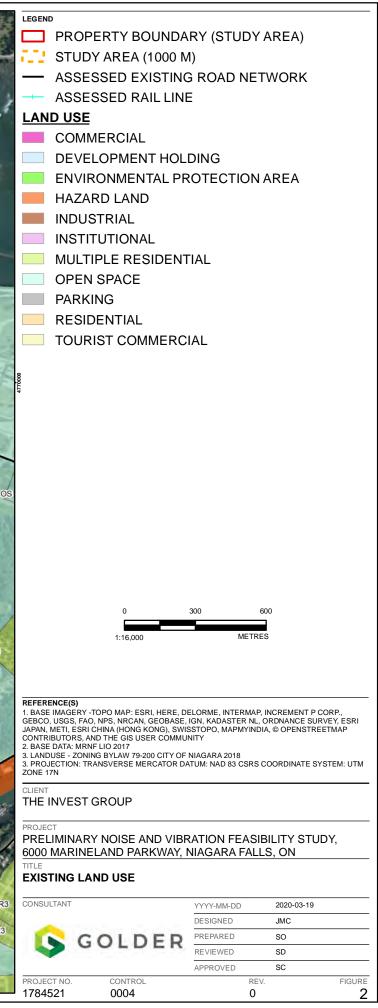
R.J. Burnside & Associates Limited (Burnside). Niagara Village Transportation Study. January 2020.

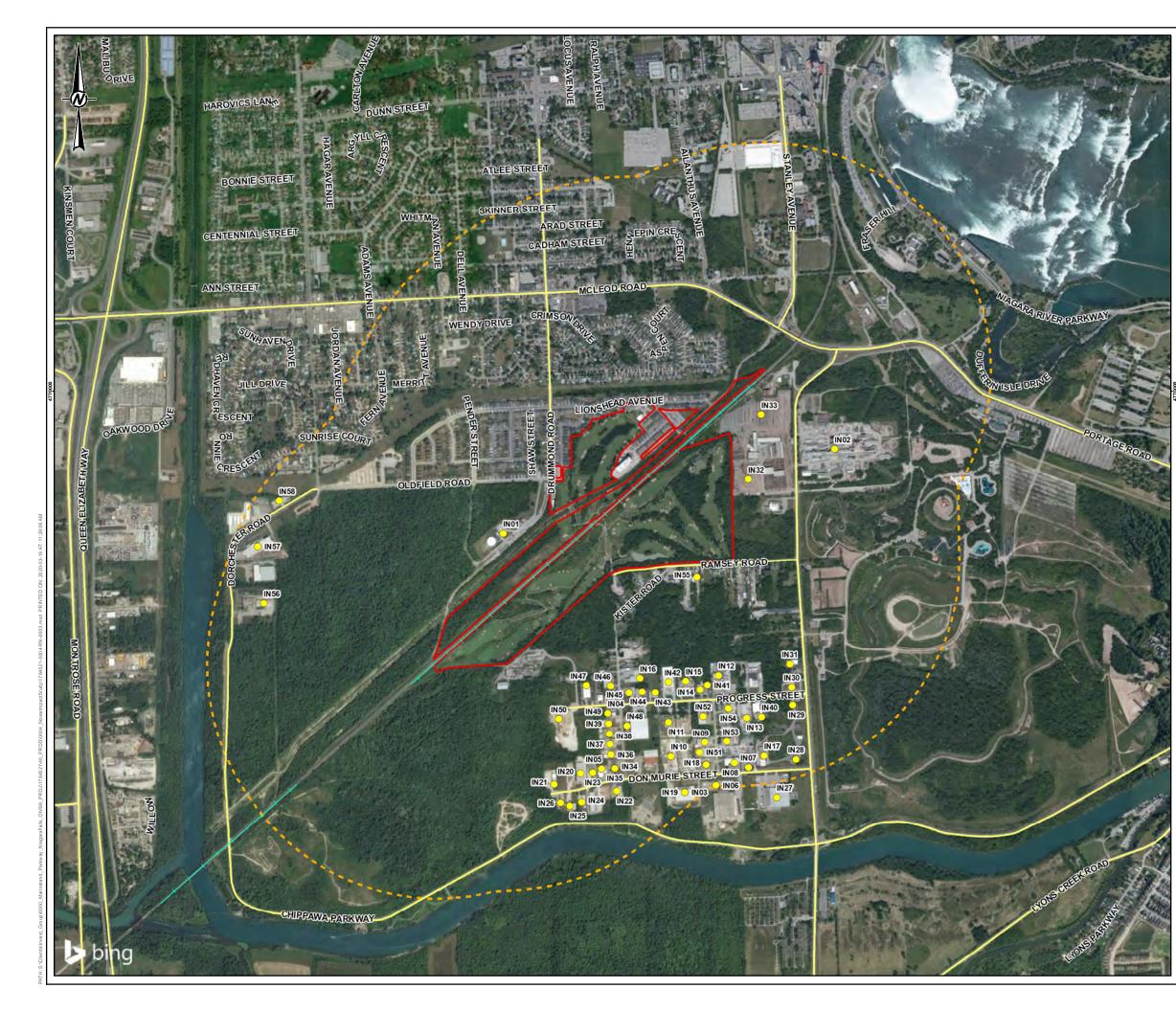

Railway Association of Canada. 2013. *Guidelines for New Development in Proximity to Railway Operations*. Dated May 2013.

RWDI Air Inc. (RWDI). Thundering Waters Secondary Plan. Air Quality, Noise and Vibration Feasibility Assessment Version 2.0. June 23, 2016.

United States of America Department of Transportation. Federal Transit Administration (FTA). 2018. *Transit Noise and Vibration Impact Assessment Manual* (FTA Report No. 0123). Dated September 2018.


- Urban and Environmental Management Inc. (UEM). *Thundering Waters Golf Course Development Meeting with City of Niagara Falls Staff.* May 26, 2016.
- UEM. Thunder Waters Golf Course Lands Report. June 28, 2016.
- UEM. Thundering Waters Golf Course Development Opportunities and Constraints Analysis. December 9, 2016.


Figures


	LEGEN)					-
		PROPER	RTY BOUN	IDARY (STL	JDY AF	REA)	
						,	
-	1.4	STUDY A	AREA (100)0 M)			
ake							
lo							
14							
1.50							
10							
1							
12							
3.							
1.							
-							
10							
-							
-							
-							
RA							
	4770000						
	477						
1							
- No.							
1							
1							
7							
~							
~							
~							
1							
1							
1							
1				4.000	2.000		
1			0	1,000	2,000		
1			0	1,000	2,000	1	
1			0 1:50,000		2,000 METRES	1	
						1	
1						1	
1							
1							
	REFERE		1:50,000		METRES		
	1. BASE	IMAGERY -TOP	1:50,000 0 MAP: ESRI, HE	RE, DELORME, INTE	METRES	REMENT P CORP.,	
	1. BASE GEBCO,	IMAGERY -TOP USGS, FAO, NP	1:50,000 O MAP: ESRI, HE 'S, NRCAN, GEOD	RE, DELORME, INTE 3ASE, IGN, KADASTE	METRES RMAP, INC ER NL, ORI	REMENT P CORP., NANCE SURVEY, ESRI	
	1. BASE GEBCO, JAPAN, CONTRI	IMAGERY -TOP USGS, FAO, NP METI, ESRI CHIN BUTORS, AND T	0 MAP: ESRI, HE %, NRCAN, GEOØ IA (HONG KONG) HE GIS USER CO	RE, DELORME, INTE BASE, IGN, KADASTE , SWISSTOPO, MAPI	METRES RMAP, INC ER NL, ORI	REMENT P CORP.,	
	1. BASE GEBCO, JAPAN, CONTRI 2. BASE	IMAGERY -TOP USGS, FAO, NP METI, ESRI CHIN BUTORS, AND T DATA: MRNF LIO	0 MAP: ESRI, HE S, NRCAN, GEOI VA (HONG KONG) HE GIS USER CO 2017	RE, DELORME, INTE 3ASE, IGN, KADASTE 1, SWISSTOPO, MAPI MMUNITY	METRES RMAP, INC R NL, ORI MYINDIA, @	CREMENT P CORP., DNANCE SURVEY, ESRI D OPENSTREETMAP	
	1. BASE GEBCO, JAPAN, CONTRI 2. BASE	IMAGERY -TOP USGS, FAO, NP METI, ESRI CHIN BUTORS, AND T DATA: MRNF LIO ECTION: TRANS	0 MAP: ESRI, HE S, NRCAN, GEOI VA (HONG KONG) HE GIS USER CO 2017	RE, DELORME, INTE 3ASE, IGN, KADASTE 1, SWISSTOPO, MAPI MMUNITY	METRES RMAP, INC R NL, ORI MYINDIA, @	REMENT P CORP., NANCE SURVEY, ESRI	
	1. BASE GEBCO, JAPAN, CONTRI 2. BASE 3. PROJ	IMAGERY -TOP USGS, FAO, NP METI, ESRI CHIN BUTORS, AND T DATA: MRNF LIO ECTION: TRANS	0 MAP: ESRI, HE S, NRCAN, GEOI VA (HONG KONG) HE GIS USER CO 2017	RE, DELORME, INTE 3ASE, IGN, KADASTE 1, SWISSTOPO, MAPI MMUNITY	METRES RMAP, INC R NL, ORI MYINDIA, @	CREMENT P CORP., DNANCE SURVEY, ESRI D OPENSTREETMAP	
	1. BASE GEBCO, JAPAN, I CONTRI 2. BASE 3. PROJ ZONE 17 CLIENT	IMAGERY -TOP USGS, FAO, NP METI, ESRI CHIN BUTORS, AND T DATA: MRNF LIC ECTION: TRANS 7N	0 MAP: ESRI, HE %, NRCAN, GEOD % A (HONG KONG) HE GIS USER CO 0 2017 EVERSE MERCAT	RE, DELORME, INTE 3ASE, IGN, KADASTE 1, SWISSTOPO, MAPI MMUNITY	METRES RMAP, INC R NL, ORI MYINDIA, @	CREMENT P CORP., DNANCE SURVEY, ESRI D OPENSTREETMAP	
	1. BASE GEBCO, JAPAN, I CONTRI 2. BASE 3. PROJ ZONE 17 CLIENT	IMAGERY -TOP USGS, FAO, NP METI, ESRI CHIN BUTORS, AND T DATA: MRNF LIO ECTION: TRANS	0 MAP: ESRI, HE %, NRCAN, GEOD % A (HONG KONG) HE GIS USER CO 0 2017 EVERSE MERCAT	RE, DELORME, INTE 3ASE, IGN, KADASTE 1, SWISSTOPO, MAPI MMUNITY	METRES RMAP, INC R NL, ORI MYINDIA, @	CREMENT P CORP., DNANCE SURVEY, ESRI D OPENSTREETMAP	_
	1. BASE GEBCO, JAPAN, J CONTRI 2. BASE 3. PROJ ZONE 1: CLIENT THE I	IMAGERY -TOP USGS, FAO, NP METI, ESRI CHIN BUTORS, AND T DATA: MRNF LIC ECTION: TRANS 7N NVEST GR	0 MAP: ESRI, HE %, NRCAN, GEOD % A (HONG KONG) HE GIS USER CO 0 2017 EVERSE MERCAT	RE, DELORME, INTE 3ASE, IGN, KADASTE 1, SWISSTOPO, MAPI MMUNITY	METRES RMAP, INC R NL, ORI MYINDIA, @	CREMENT P CORP., DNANCE SURVEY, ESRI D OPENSTREETMAP	
	1. BASE GEBCO, JAPAN, I CONTRI 2. BASE 3. PROJ ZONE 13 CLIENT THE I	IMAGERY -TOP USGS, FAO, NP METI, ESRI CHIN BUTORS, AND T DATA: MRNF LIC ECTION: TRANS 7N NVEST GR	0 MAP: ESRI, HE 'S, NRCAN, GEOI VA (HONG KONG) HE GIS USER CO 2017 EVERSE MERCAT	RE, DELORME, INTE 3ASE, IGN, KADASTE 3, SWISSTOPO, MAPI MMUNITY OR DATUM: NAD 83	METRES RMAP, INC ER NL, ORI MYINDIA, @ CSRS COC	CREMENT P CORP., DNANCE SURVEY, ESRI DOPENSTREETMAP DRDINATE SYSTEM: UTM	_
	1. BASE GEBCO, JAPAN, I CONTRI 2. BASE 3. PROJ ZONE 12 CLIENT THE I PROJEC	IMAGERY -TOP USGS, FAO, NF METI, ESRI CHII BUTORS, AND T DATA: MRNF LI ECTION: TRANS TN NVEST GR	0 MAP: ESRI, HE 'S, NRCAN, GEOI VA (HONG KONG) HE GIS USER CO 2017 EVERSE MERCAT	RE, DELORME, INTE 3ASE, IGN, KADASTE 3, SWISSTOPO, MAPI MMUNITY OR DATUM: NAD 83 VIBRATION FE	METRES RMAP, INC ER NL, ORI MYINDIA, @ CSRS COC	DRDINATE SYSTEM: UTM	
	1. BASE GEBCO, JAPAN, I CONTRI 2. BASE 3. PROJ ZONE 1. CLIENT THE I PROJEC PREL 6000	IMAGERY -TOP USGS, FAO, NF METI, ESRI CHII BUTORS, AND T DATA: MRNF LI ECTION: TRANS TN NVEST GR	0 MAP: ESRI, HE 'S, NRCAN, GEOI VA (HONG KONG) HE GIS USER CO 2017 EVERSE MERCAT	RE, DELORME, INTE 3ASE, IGN, KADASTE 3, SWISSTOPO, MAPI MMUNITY OR DATUM: NAD 83	METRES RMAP, INC ER NL, ORI MYINDIA, @ CSRS COC	DRDINATE SYSTEM: UTM	
	1. BASE GEBCO. JAPAN, I CONTRI 2. BASE 3. PROJ ZONE 1: CLIENT THE I PROJEC PREL 6000 TITLE	IMAGERY -TOP USGS, FAO, NF METI, ESRI CHII BUTORS, AND T DATA: MRNF LI ECTION: TRANS 7N NVEST GR T IMINARY N MARINELA	0 MAP: ESRI, HE S, NRCAN, GEOI VA (HONG KONG) HE GIS USER CC 2017 EVERSE MERCAT	RE, DELORME, INTE 3ASE, IGN, KADASTE 3, SWISSTOPO, MAPI MMUNITY OR DATUM: NAD 83 VIBRATION FE	METRES RMAP, INC ER NL, ORI MYINDIA, @ CSRS COC	DRDINATE SYSTEM: UTM	_
	1. BASE GEBCO. JAPAN, I CONTRI 2. BASE 3. PROJ ZONE 1: CLIENT THE I PROJEC PREL 6000 TITLE	IMAGERY -TOP USGS, FAO, NF METI, ESRI CHII BUTORS, AND T DATA: MRNF LI ECTION: TRANS TN NVEST GR	0 MAP: ESRI, HE S, NRCAN, GEOI VA (HONG KONG) HE GIS USER CC 2017 EVERSE MERCAT	RE, DELORME, INTE 3ASE, IGN, KADASTE 3, SWISSTOPO, MAPI MMUNITY OR DATUM: NAD 83 VIBRATION FE	METRES RMAP, INC ER NL, ORI MYINDIA, @ CSRS COC	DRDINATE SYSTEM: UTM	
	1. BASE GEBCO. JAPAN, I CONTRI 2. BASE 3. PROJ ZONE 1: CLIENT THE I PROJEC PREL 6000 TITLE	IMAGERY -TOP USGS, FAO, NF METI, ESRI CHII BUTORS, AND T DATA: MRNF LI ECTION: TRANS 7N NVEST GR T IMINARY N MARINELA	0 MAP: ESRI, HE S, NRCAN, GEOI VA (HONG KONG) HE GIS USER CC 2017 EVERSE MERCAT	RE, DELORME, INTE 3ASE, IGN, KADASTE 3, SWISSTOPO, MAPI MMUNITY OR DATUM: NAD 83 VIBRATION FE	METRES RMAP, INC ER NL, ORI MYINDIA, @ CSRS COC	DRDINATE SYSTEM: UTM	
N N N	1. BASE GEBCO. JAPAN, I CONTRI 2. BASE 3. PROJ ZONE 1: CLIENT THE I PROJEC PREL 6000 TITLE	IMAGERY -TOP USGS, FAO, NF METI, ESRI CHII BUTORS, AND T DATA: MRNF LI ECTION: TRANS 7N NVEST GR T IMINARY N MARINELA LOCATION	0 MAP: ESRI, HE S, NRCAN, GEOI VA (HONG KONG) HE GIS USER CC 2017 EVERSE MERCAT	RE, DELORME, INTE 3ASE, IGN, KADASTE 3, SWISSTOPO, MAPI MMUNITY OR DATUM: NAD 83 OR DATUM: NAD 83 VIBRATION FE AY, NIAGARA	METRES RMAP, INC ER NL, ORI MYINDIA, @ CSRS COC EASIBIL FALLS,	DRDINATE SYSTEM: UTM	
K K	1. BASE GEBCO, JAPAN, CONTRI 2. BASE 3. PROJ CLIENT THE I PROJEC PREL 6000 TITLE SITE	IMAGERY -TOP USGS, FAO, NF METI, ESRI CHII BUTORS, AND T DATA: MRNF LI ECTION: TRANS 7N NVEST GR T IMINARY N MARINELA LOCATION	0 MAP: ESRI, HE S, NRCAN, GEOI VA (HONG KONG) HE GIS USER CC 2017 EVERSE MERCAT	RE, DELORME, INTE 3ASE, IGN, KADASTE 3, SWISSTOPO, MAPI OMMUNITY OR DATUM: NAD 83 VIBRATION FE AY, NIAGARA	METRES RMAP, INC ER NL, ORI MYINDIA, @ CSRS COC EASIBIL FALLS,	CREMENT P CORP., DNANCE SURVEY, ESRI DOPENSTREETMAP DRDINATE SYSTEM: UTM .ITY STUDY, ON 2020-03-19	
	1. BASE GEBCO, JAPAN, CONTRI 2. BASE 3. PROJ CLIENT THE I PROJEC PREL 6000 TITLE SITE	IMAGERY -TOP USGS, FAO, NF METI, ESRI CHII BUTORS, AND T DATA: MRNF LI ECTION: TRANS 7N NVEST GR T IMINARY N MARINELA LOCATION	0 MAP: ESRI, HE S, NRCAN, GEOI VA (HONG KONG) HE GIS USER CC 2017 EVERSE MERCAT	RE, DELORME, INTE 3ASE, IGN, KADASTE 3, SWISSTOPO, MAPI MMUNITY OR DATUM: NAD 83 OR DATUM: NAD 83 VIBRATION FE AY, NIAGARA	METRES RMAP, INC ER NL, ORI MYINDIA, @ CSRS COC EASIBIL FALLS,	DRDINATE SYSTEM: UTM	
1 A A	1. BASE GEBCO, JAPAN, CONTRI 2. BASE 3. PROJ CLIENT THE I PROJEC PREL 6000 TITLE SITE	IMAGERY -TOP USGS, FAO, NP METI, ESRI CHI BUTORS, AND T DATA: MRNF LIG ECTION: TRANS 7N NVEST GR IMINARY N MARINELA LOCATION	1:50,000 0: MAP: ESRI, HE 1:50,000 0: SRCAN, GEOI 1: VERSE MERCAT 1: VERSE MERCAT 1: VERSE MERCAT 1: VERSE MERCAT 1: VERSE MERCAT	RE, DELORME, INTE 3ASE, IGN, KADASTE 3ASE, IGN, KADASTE 3ASE, IGN, KADASTE 3ASE, IGN, KADASTE 3ASE VIBRATION FE AY, NIAGARA 2YYY-MM-DE DESIGNED	RMAP, INC RMAP, INC R NL, ORI WYINDIA, G CSRS COC EASIBIL FALLS,	CREMENT P CORP., DNANCE SURVEY, ESRI DOPENSTREETMAP DRDINATE SYSTEM: UTM .ITY STUDY, ON 2020-03-19	
	1. BASE GEBCO, JAPAN, CONTRI 2. BASE 3. PROJ CLIENT THE I PROJEC PREL 6000 TITLE SITE	IMAGERY -TOP USGS, FAO, NP METI, ESRI CHI BUTORS, AND T DATA: MRNF LIG ECTION: TRANS 7N NVEST GR IMINARY N MARINELA LOCATION	0 MAP: ESRI, HE S, NRCAN, GEOI VA (HONG KONG) HE GIS USER CC 2017 EVERSE MERCAT	RE, DELORME, INTE 3ASE, IGN, KADASTE 3ASE, IGN, KADASTE 3ASE, IGN, KADASTE 3ASE, IGN, KADASTE 3ASE 3ASE 3ASE 3ASE 3ASE 3ASE 3ASE 3AS	RMAP, INC RMAP, INC R NL, ORI WYINDIA, G CSRS COC EASIBIL FALLS,	REMENT P CORP., NANCE SURVEY, ESRI OPENSTREETMAP DRDINATE SYSTEM: UTM .ITY STUDY, ON 2020-03-19 JMC SO	
No of the second	1. BASE GEBCO, JAPAN, CONTRI 2. BASE 3. PROJ CLIENT THE I PROJEC PREL 6000 TITLE SITE	IMAGERY -TOP USGS, FAO, NP METI, ESRI CHI BUTORS, AND T DATA: MRNF LIG ECTION: TRANS 7N NVEST GR IMINARY N MARINELA LOCATION	1:50,000 0: MAP: ESRI, HE 1:50,000 0: SRCAN, GEOI 1: VERSE MERCAT 1: VERSE MERCAT 1: VERSE MERCAT 1: VERSE MERCAT 1: VERSE MERCAT	RE, DELORME, INTE 3ASE, IGN, KADASTE 3ASE, IGN, KADASTE 3ASE, IGN, KADASTE 3ASE, IGN, KADASTE 3ASE VIBRATION FE AY, NIAGARA 2YYY-MM-DE DESIGNED	RMAP, INC RMAP, INC R NL, ORI WYINDIA, G CSRS COC EASIBIL FALLS,	REMENT P CORP., NANCE SURVEY, ESRI OPENSTREETMAP ORDINATE SYSTEM: UTM ITY STUDY, ON 2020-03-19 JMC	
	1. BASE GEBCO, JAPAN, CONTRI 2. BASE 3. PROJ CLIENT THE I PROJEC PREL 6000 TITLE SITE	IMAGERY -TOP USGS, FAO, NP METI, ESRI CHI BUTORS, AND T DATA: MRNF LIG ECTION: TRANS 7N NVEST GR IMINARY N MARINELA LOCATION	1:50,000 0: MAP: ESRI, HE 1:50,000 0: SRCAN, GEOI 1: VERSE MERCAT 1: VERSE MERCAT 1: VERSE MERCAT 1: VERSE MERCAT 1: VERSE MERCAT	RE, DELORME, INTE 3ASE, IGN, KADASTE 3ASE, IGN, KADASTE 3ASE, IGN, KADASTE 3ASE, IGN, KADASTE 3ASE 3ASE 3ASE 3ASE 3ASE 3ASE 3ASE 3AS	RMAP, INC RMAP, INC R NL, ORI MYINDIA, C CSRS COC EASIBIL FALLS,	REMENT P CORP., NANCE SURVEY, ESRI OPENSTREETMAP DRDINATE SYSTEM: UTM .ITY STUDY, ON 2020-03-19 JMC SO	
	1. BASE GEBCO, JAPAN, CONTRI 2. BASE 3. PROJ CLIENT THE I PROJEC PREL 6000 TITLE SITE	IMAGERY -TOP USGS, FAO, NF METI, ESRI CHII BUTORS, AND T DATA: MRNF LIX ECTION: TRANS 7N NVEST GR IMINARY N MARINELA LOCATION ITANT	1:50,000 0: MAP: ESRI, HE 1:50,000 0: SRCAN, GEOI 1: VERSE MERCAT 1: VERSE MERCAT 1: VERSE MERCAT 1: VERSE MERCAT 1: VERSE MERCAT	RE, DELORME, INTE BASE, IGN, KADASTE ASE, IGN, KADASTE , SWISSTOPO, MAPI OMMUNITY OR DATUM: NAD 83 OR DATUM:	RMAP, INC RMAP, INC R NL, ORI MYINDIA, C CSRS COC EASIBIL FALLS,	SREMENT P CORP., DNANCE SURVEY, ESRI D OPENSTREETMAP DRDINATE SYSTEM: UTM ITY STUDY, ON 2020-03-19 JMC SO SD	

26mm IF THIS MEASUREMENT DOES NOT MATCH WHAT IS SHOWN, THE SHEET SIZE HAS BEEN MOD IFIED

25,000 IF THIS MEASUREMENT DOES NOT MATCH WHAT IS SHOWN, THE SHEET SIZE HAS BEEN MC

LEGEND PROPERTY BOUNDARY (STUDY AREA) STUDY AREA (1000 M) ASSESSED EXISTING ROAD NETWORK ASSESSED RAIL LINE ASSESSED INDUSTRIAL FACILITY

Facility Name Facility Address IN01 Chemtrade Washington Mills Electro Minerals Corporation H & L. Tool and Die Ltd. IN02 7780 Stanley Ave INO3 IN04 1683063 Ontario Inc. (Milestone Millwork) IN05 Niagara Pattern Limited Edscha North America Inc. Brunner Manufacturing & Sales Ltd. IN06 IN07 IN08 Tecna-Division of Brunner Laurcoat Inc. St. Lawrence Cement Inc. / I 11109 IN 10 IN11 Pumpcrete Corporation IN 12 Mancuso Chemicals Limite Hoco Limited Barbisan Allmetal Designs IN13 IN14 IN15 Can Mar Manufacturing In Fencast Industries Lt Marineland Canada IN 16 IN 17 Falls Contracting Inc. IN 18 Dyaco Canada Inc. Niagara River Trading IN 19 IN 20 Gordon Wright Electrical Li Air Liquide Canada Inc. Airwood Vents IN21 IN22 IN23 IN24 International Sew-Right IN25 Marine Clean Ltd. IN26 Niagara Commercial IN27 Deflecto Canada Marineland Canada Marineland Canada Batemans Tires IN28 IN29 IN30 IN31 Peglow Tool & Die Inc Salit Steel L. Wallter & Sons Exc IN32 IN 33 IN34 Hangups Sportware 6537 Kister Road IN35 IN36 IN37 Fastenal Micron Installation 6537 Kister Road 6501 Kister Road Niagara RV & Trailer Cent 6471 Kister Road Niagara Bus Wash T.Hodgson & Co. Ltd. Davert Tools IN 38 6441 Kister Road IN 39 6411 Kister Road IN40 Niagara Analytical Labo Louver-Lite Aztec Frames IN41 IN42 IN43 IN44 GC Customs Services In IN45 IN46 Niagara Fence Supply Niagara Fastener In IN47 Provincial Design & Fabrication In Spencer ARL Unit 1 Advanced Cryogenic Se IN48 IN49 IN50 Lafarge Quality Ready Mix Collins Concessions Ltd. Factor Forms and Labels IN51 IN52 IN53 Stelfab Niagara Limited Food Roll Sales (Niagara Linited Fred's Concrete Avid Growing Systems IN 54 IN55 IN56 IN57

6300 Oldfield Road 5955 Don Murie Stre 6100 Progress Street 6135 Don Murie Street 5795 Don Murie Street 5720 Don Murie Street 5770 Don Murie Street 8591 Farl Thomas Ave 5980 Don Murie Stree 6000 Progress Street 5635 & 5725 Progress Stree 5720 Progress Street 5835 Progress Street 5869 Progress Street 6272 Kister Road 5680 Don Murie Stre 5850 Unit D Don Murie Stree 5955 Don Murie Stree 6199 Don Murie Stree 6255 Don Murie Street 6090 Don Murie Stree 6167 Don Murie Stree 6190 Don Murie Stree 6220 Don Murie Stree 6260 Don Murie Stree 8699 Stanley Avenue 8529-8559 Stanley Aven 8455 Stanley Avenue 8407 Stanley Avenue 8345 Stanley Avenue 7771 Stanley Avenue 7527 Stanley Avenue 5676 Progress Stree 5805 Progress Street 6015 Progress Street 6025 Progress Street 6045 Progress Street 6065 Progress Street 6095 Progress Street 6159 Progress Street 6040 Progress Street 6100 Progress Street 6224 Progress Street 8621 Earl Thomas Avenue 8481 Earl Thomas Avenue 8594 Earl Thomas Avenue 8464 Earl Thomas Avenu 5806 Ramsey Road 8100 Dorchester Road 7942 Dorchester Road 7825 Dorchester Road

600

METRES

REFERENCE(S)

1. BASE IMAGERY -TOPO MAP: ESRI, HERE, DELORME, INTERMAP, INCREMENT P CORP., GEBCO, USGS, FAO, NPS, NRCAN, GEOBASE, IGN, KADASTER NL, ORDNANCE SURVEY, ESRI JAPAN, METI, ESRI CHINA (HONG KONG), SWISSTOPO, MAPMYINDIA, © OPENSTREETMAP CONTRIBUTORS, AND THE GIS USER COMMUNITY

2. BASE DATA: MRNF LIO 2017 2. BODG DIVERSITY END OF THE RECATOR DATUM: NAD 83 CSRS COORDINATE SYSTEM: UTM ZONE 17N

Palfinger Inc

1:16,000

Niagara Moving and Storage

IN58

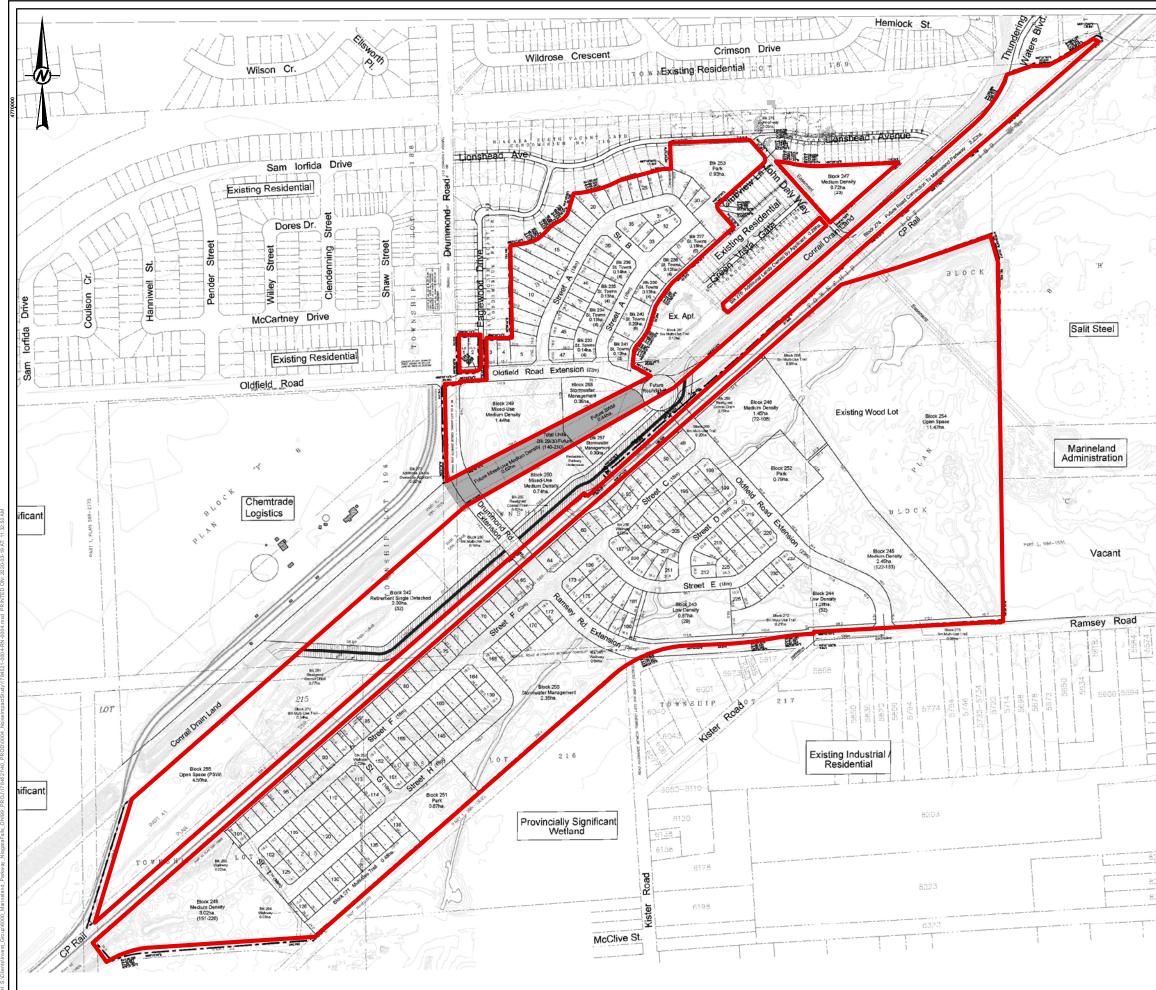
CLIENT

THE INVEST GROUP

PROJECT

PRELIMINARY NOISE AND VIBRATION FEASIBILITY STUDY, 6000 MARINELAND PARKWAY, NIAGARA FALLS, ON

EXISTING SITE LAYOUT PLAN


CONSULTANT

1784521



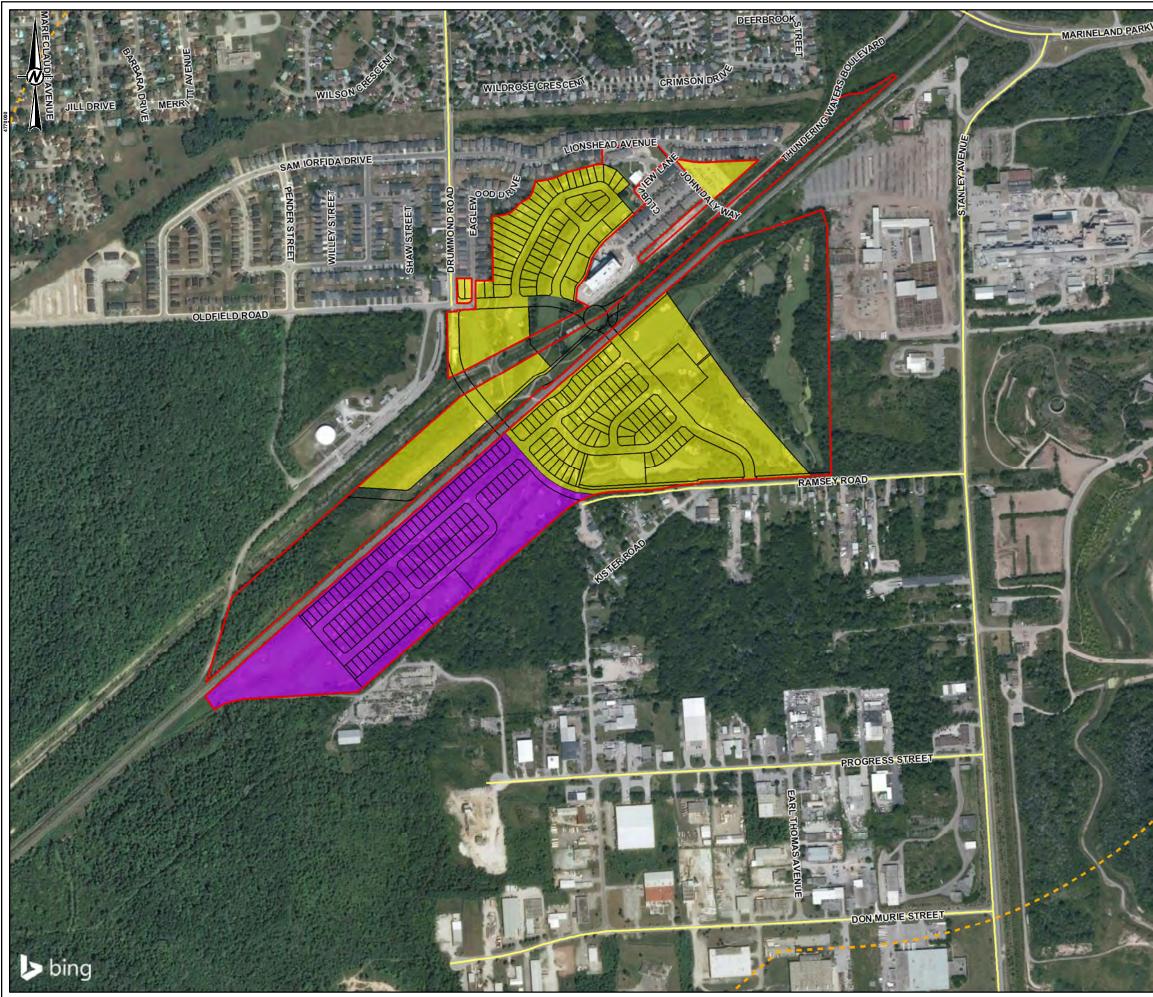
0004

YYYY-MM-DD		2020-03-19	
DESIGNED		JMC	
PREPARED		SO	
REVIEWED		SD	
APPROVED		SC	
	REV.		FIGURE
	0		3

D Pi						
	ROPE	RTY BOU	NDARY	(STUD)	(AREA)	
8						
4770000						
0			200	<u></u>		400
0		1:5.500	200	METF	RES	400
0		1:5,500	200	METF	RES	400
0		1:5,500	200	METF	RES	400
0		1:5,500	200	METF	RES	400
	Ξ(S)	1:5,500	200	METF	RES	400
REFERENCE 1. SITE PLAN 2. PROJECT	N PROVIDI	1:5,500 ED BY THE CLIEN SVERSE MERCA	T			
REFERENCE 1. SITE PLAN	N PROVIDI	ED BY THE CLIEN	T			
REFERENCE 1. SITE PLAN 2. PROJECT	N PROVIDI	ED BY THE CLIEN	T			
REFERENCE 1. SITE PLAN 2. PROJECT ZONE 17N CLIENT	N PROVIDI ION: TRAN	ED BY THE CLIEN ISVERSE MERCA	T			
REFERENCE 1. SITE PLAN 2. PROJECT ZONE 17N	N PROVIDI ION: TRAN	ED BY THE CLIEN ISVERSE MERCA	T			
REFERENCE 1. SITE PLAN 2. PROJECT CLIENT THE INV PROJECT	Y PROVIDI	ED BY THE CLIEN ISVERSE MERCA	T TOR DATUM: N	IAD 83 CSRS	S COORDINATI	E SYSTEM: UT
REFERENCE 1. SITE PLAR 2. PROJECT ZONE 17N CLIENT THE INV PROJECT PRELIMI	Y PROVIDI ION: TRAN	ED BY THE CLIEN ISVERSE MERCA	T TOR DATUM: M	IAD 83 CSRS	S COORDINATI	E SYSTEM: UT
REFERENCE 1. SITE PLAN 2. PROJECT ZONE 17N CLIENT THE INV PROJECT PRELIMI 6000 MA TITLE	Y PROVIDI ION: TRAM	ED BY THE CLIEN ISVERSE MERCA ROUP NOISE AND AND PARKV	T TOR DATUM: M VIBRATIC VAY, NIAG	IAD 83 CSRS	S COORDINATI	E SYSTEM: UT
REFERENCE 1. SITE PLAN 2. PROJECT ZONE 17N CLIENT THE INV PROJECT PRELIMI 6000 MA TITLE	Y PROVIDI ION: TRAM	ED BY THE CLIEN ISVERSE MERCA ROUP NOISE AND	T TOR DATUM: M VIBRATIC VAY, NIAG	IAD 83 CSRS	S COORDINATI	E SYSTEM: UT
REFERENCE 1. SITE PLAN 2. PROJECT ZONE 17N CLIENT THE INV PROJECT PRELIMI 6000 MA TITLE	Y PROVIDI ION: TRAM	ED BY THE CLIEN ISVERSE MERCA ROUP NOISE AND AND PARKV	T TOR DATUM: M VIBRATIC VAY, NIAG NT SITE L	IAD 83 CSRS	S COORDINATI	E SYSTEM: UT
REFERENCE 1. SITE PLAP 2. PROJECT ZONE 17N CLIENT THE INV PROJECT PRELIMI 6000 MA TITLE PROPOS CONSULTAN		ED BY THE CLIEN ISVERSE MERCA ROUP NOISE AND AND PARKY	T TOR DATUM: M VIBRATIC VAY, NIAG NT SITE L	DN FEAS ARA FAL AYOUT F	IBILITY S LS, ON PLAN 2020-03- JMC	E SYSTEM: UTI
REFERENCE 1. SITE PLAP 2. PROJECT ZONE 17N CLIENT THE INV PROJECT PRELIMI 6000 MA TITLE PROPOS CONSULTAN		ED BY THE CLIEN ISVERSE MERCA ROUP NOISE AND AND PARKV	T TOR DATUM: M VIBRATIC VAY, NIAG NT SITE L VYYY DESI	DN FEAS ARA FAL AYOUT I -MM-DD GNED -ARED	IBILITY S LS, ON PLAN 2020-03- JMC JMC	E SYSTEM: UTI
REFERENCE 1. SITE PLAP 2. PROJECT ZONE 17N CLIENT THE INV PROJECT PRELIMI 6000 MA TITLE PROPOS CONSULTAN		ED BY THE CLIEN ISVERSE MERCA ROUP NOISE AND AND PARKY	T TOR DATUM: N VIBRATIC VAY, NIAG NT SITE L VAY PREF R PREF R	DN FEAS ARA FAL AYOUT F	IBILITY S LS, ON PLAN 2020-03- JMC	E SYSTEM: UTI

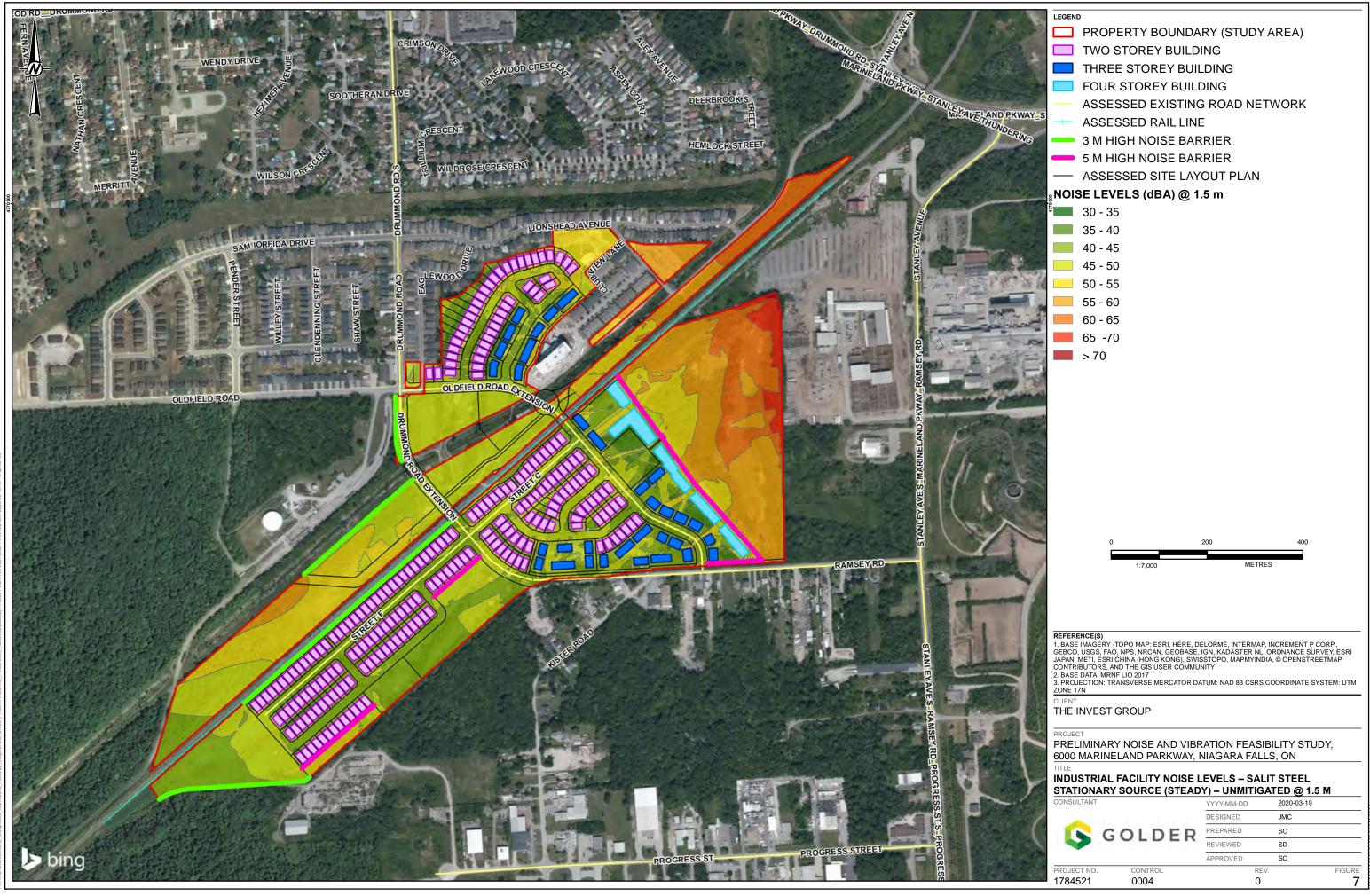
	VIBRAI	ION MEASU	-		
		0	200	400	
		1:8,000	METR	ES	
), USGS, FAO, N	IPS, NRCAN, GEOBAS IINA (HONG KONG), S THE GIS USER COMI	SE, IGN, KADASTER NL WISSTOPO, MAPMYINI	P, INCREMENT P CORP., , ORDNANCE SURVEY, E DIA, © OPENSTREETMA	ESR P
GEBCC JAPAN, CONTR		INVEDOE MEDOATOR	DATUM: NAD 83 CSRS	COORDINATE SYSTEM	
GEBCC JAPAN, CONTR 2. BASE 3. PRO ZONE 1	RIBUTORS, AND E DATA: MRNF L JECTION: TRAN 17N	SVERSE MERCATOR			: U1
GEBCC JAPAN, CONTR 2. BASE 3. PRO ZONE 1 CLIENT	RIBUTORS, AND E DATA: MRNF L JECTION: TRAN 17N				: U1
GEBCC JAPAN, CONTR 2. BASE 3. PRO ZONE 1 CLIENT THE PROJE	RIBUTORS, AND E DATA: MRNF L JECTION: TRAN INVEST GF	ROUP			: U1
GEBCC JAPAN, CONTR 2. BASE 3. PRO. ZONE 1 CLIENT THE PROJE PREI 6000	TIBUTORS, AND E DATA: MRNF L JECTION: TRAN INVEST GF CT LIMINARY I	ROUP NOISE AND VI	BRATION FEAS Y, NIAGARA FAL		: UT
GEBCC JAPAN, CONTR 2. BASE 3. PRO. ZONE 1 CLIENT THE PROJE PROJE PREI 6000 TITLE	IBUTORS, AND E DATA: MRNF L JECTION: TRAN INVEST GF INVEST GF CT LIMINARY I MARINEL	ROUP NOISE AND VI AND PARKWAY		LS, ON	: U1
GEBCC JAPAN, CONTR 2. BASE 3. PRO. ZONE 1 CLIENT THE PROJE PROJE PREI 6000 TITLE	EIBUTORS, AND E DATA: MRNFL JECTION: TRAN TN INVEST GF CT LIMINARY I MARINEL SE AND VIE	ROUP NOISE AND VI AND PARKWAY	Y, NIAGARA FAL	LS, ON	: U1
GEBCC JAPAN, CONTR 2. BASE 3. PRO. ZONE 1 CLIENT THE PROJE PROJE PREI 60000 TITLE	EIBUTORS, AND E DATA: MRNFL JECTION: TRAN TN INVEST GF CT LIMINARY I MARINEL SE AND VIE	ROUP NOISE AND VI AND PARKWAY	Y, NIAGARA FAL	LS, ON CATIONS	: U1
GEBCC JAPAN, CONTR 2. BASE 3. PRO. ZONE 1 CLIENT THE PROJE PROJE PREI 60000 TITLE	IBUTORS, AND E DATA: MRNFL JECTION: TRAN INVEST GF INVEST GF CT LIMINARY I MARINEL SE AND VIE	ROUP NOISE AND VI AND PARKWAY	Y, NIAGARA FAL SUREMENT LO YYYY-MM-DD DESIGNED PREPARED	LS, ON CATIONS 2020-03-19 JMC SO	: U1
GEBCC JAPAN, CONTR 2. BASE 3. PRO. ZONE 1 CLIENT THE PROJE PROJE PREI 60000 TITLE	IBUTORS, AND E DATA: MRNFL JECTION: TRAN INVEST GF INVEST GF CT LIMINARY I MARINEL SE AND VIE	ROUP NOISE AND VI AND PARKWA BRATION MEA	Y, NIAGARA FAL SUREMENT LO YYYY-MM-DD DESIGNED	LS, ON CATIONS 2020-03-19 JMC	: U1
GEBCC JAPAN, CONTR 2. BASIS 3. PRO. ZONE 1 CLIENT THE PROJE PROJE PROJE NOIS	EIBUTORS, AND E DATA: MRNFL JECTION: TRAN INVEST GF CT LIMINARY I MARINEL SE AND VIE JLTANT CT NO.	ROUP NOISE AND VI AND PARKWA BRATION MEA	Y, NIAGARA FAL SUREMENT LO VYYY-MM-DD DESIGNED PREPARED REVIEWED	LS, ON CATIONS 2020-03-19 JMC SO SD SC	: U1

LEGEND

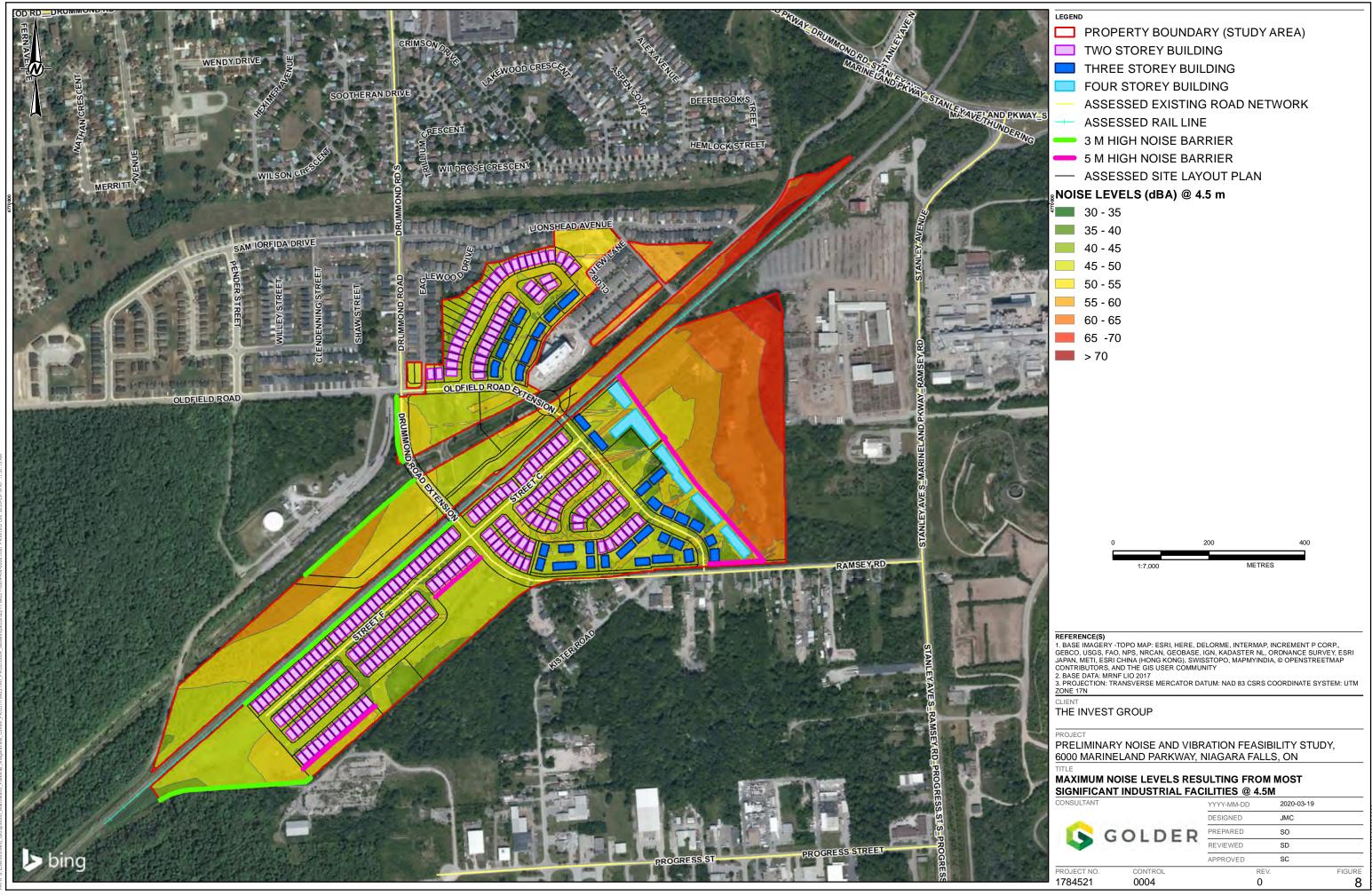

12

 \bigcirc

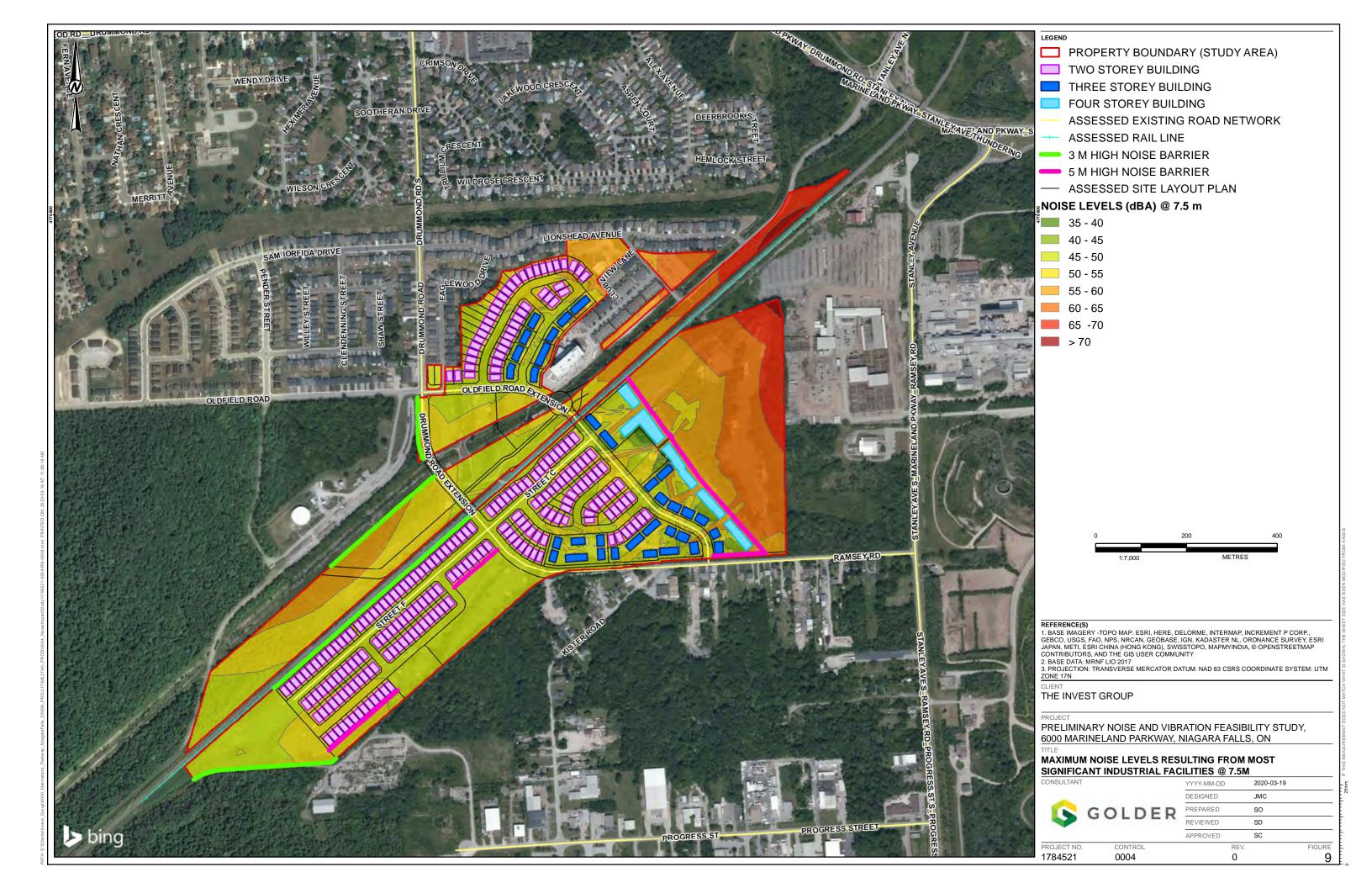
PROPERTY BOUNDARY (STUDY AREA)

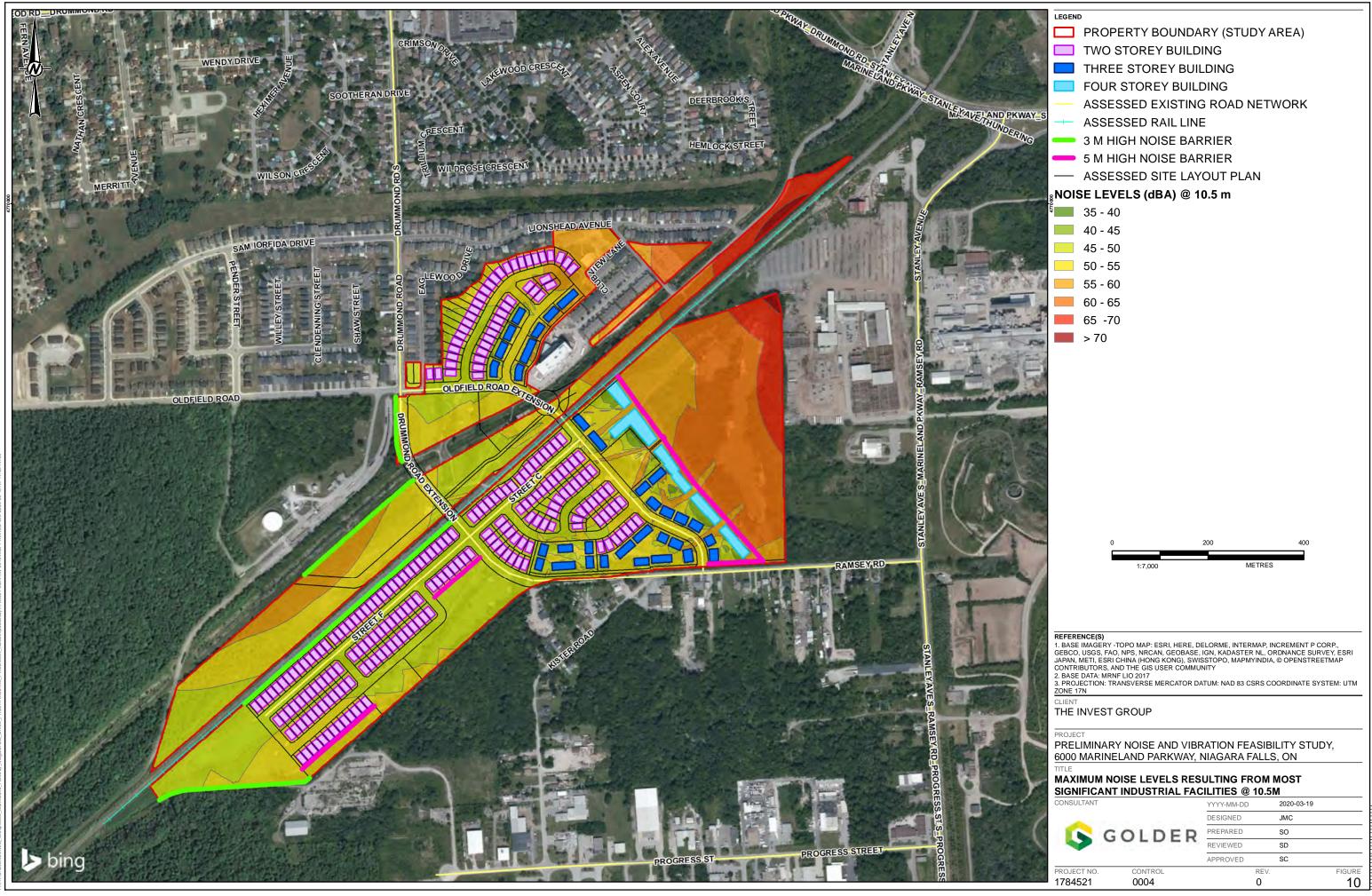

ASSESSED EXISTING ROAD NETWORK NOISE MEASUREMENT LOCATIONS

STUDY AREA (1000 M)

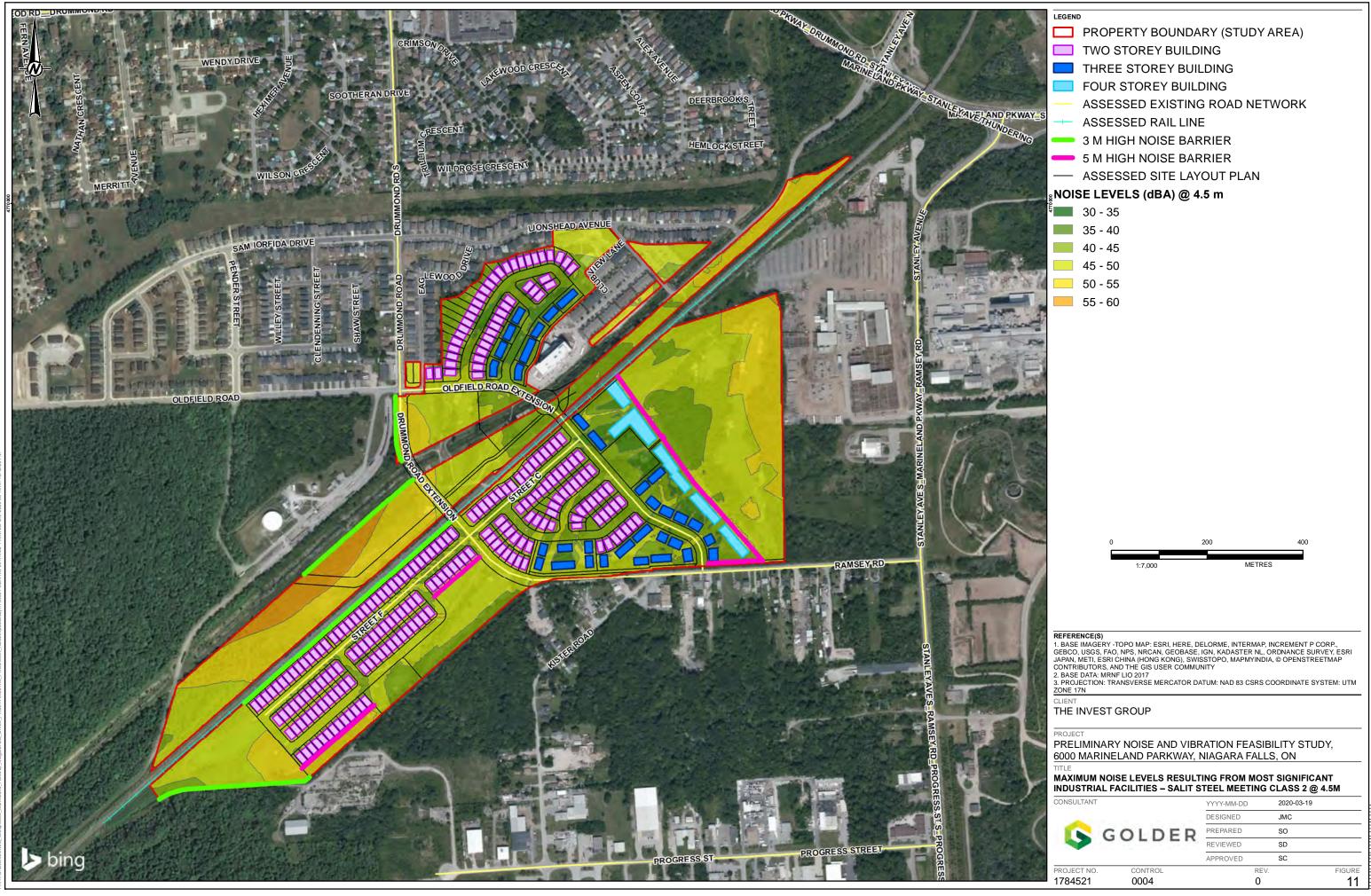


10 A	PROPERTY BOUNDARY (STUDY AREA)					
	TUDY AREA (100	00 M)				
	LASS 2					
	_ASS 4					
AS	SSESSED EXIST	ING ROAD NE	TWORK			
т Аз	SSESSED SITE L	LAYOUT PLAN				
	0	200	400			
	1:0.000	METRE				
	1:8,000	METR				
	GERY -TOPO MAP: ESRI, HEI					
JAPAN, METI	S, FAO, NPS, NRCAN, GEOE , ESRI CHINA (HONG KONG)	, SWISSTOPO, MAPMYIND				
2. BASE DAT	DRS, AND THE GIS USER CC A: MRNF LIO 2017					
ZONE 17N	JN: TRANSVERSE MERCAT	OR DATUM: NAD 83 CSRS	COORDINATE SYSTEM: UTM			
CLIENT THE INV	EST GROUP					
	-					
PROJECT PRELIMI	NARY NOISE AND	VIBRATION FEASI	BILITY STUDY,			
<u>6000 MA</u>	RINELAND PARKW		'			
	T SITE PROPOSED	CLASSIFICATIO	NAREAS			
			-			
CONSULTAN	Г	YYYY-MM-DD	2020-03-19			
1.00		PREPARED	JMC			
	00100					
	GOLDE	REVIEWED	SO SD			
5	GOLDE	R				
PROJECT NO 1784521		REVIEWED	SD SC			

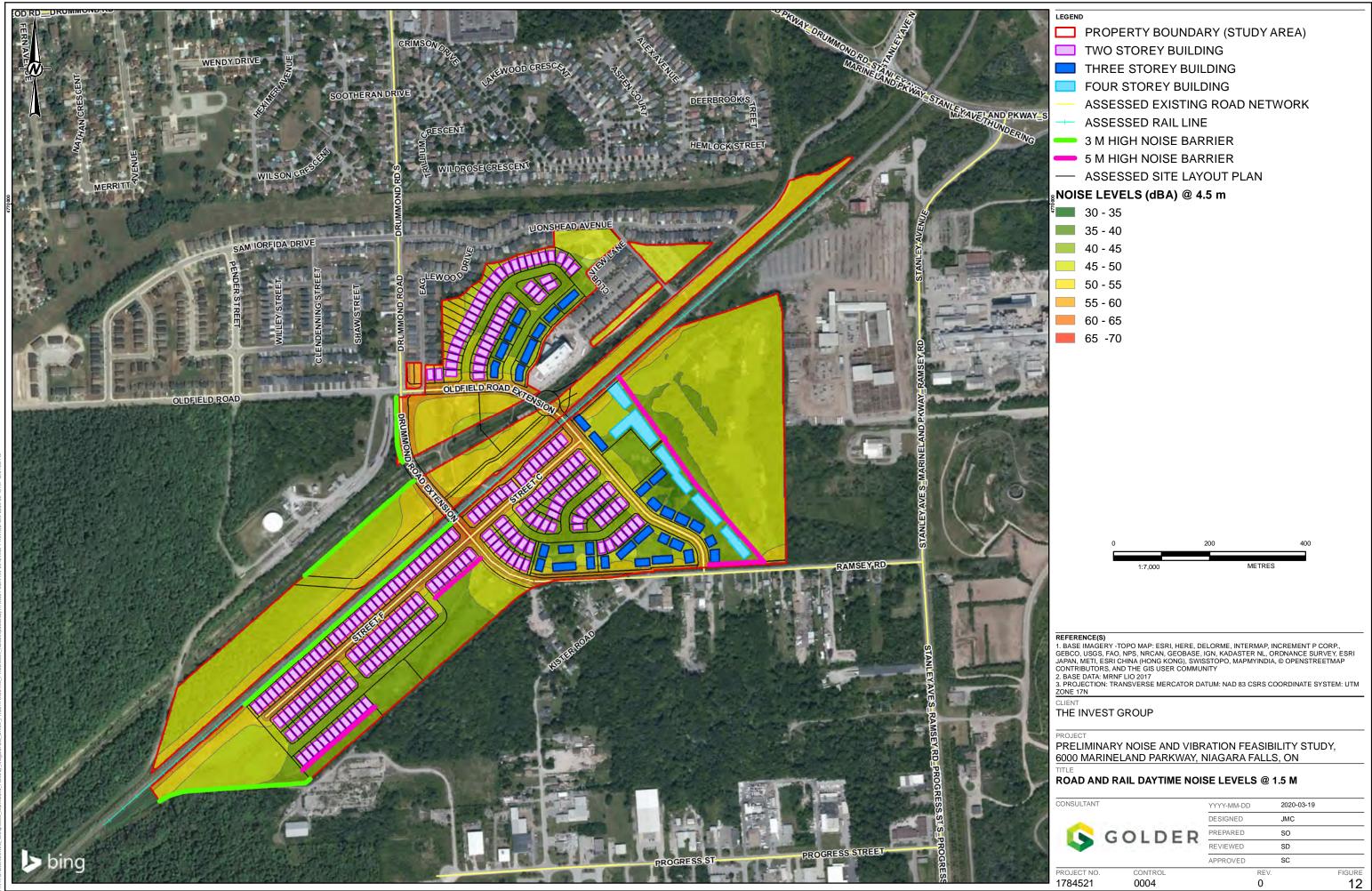

25mm IF THIS MEASUREMENT DOES NOT MATCH WHAT IS SHOWN, THE SHEET SIZE HAS BEEN

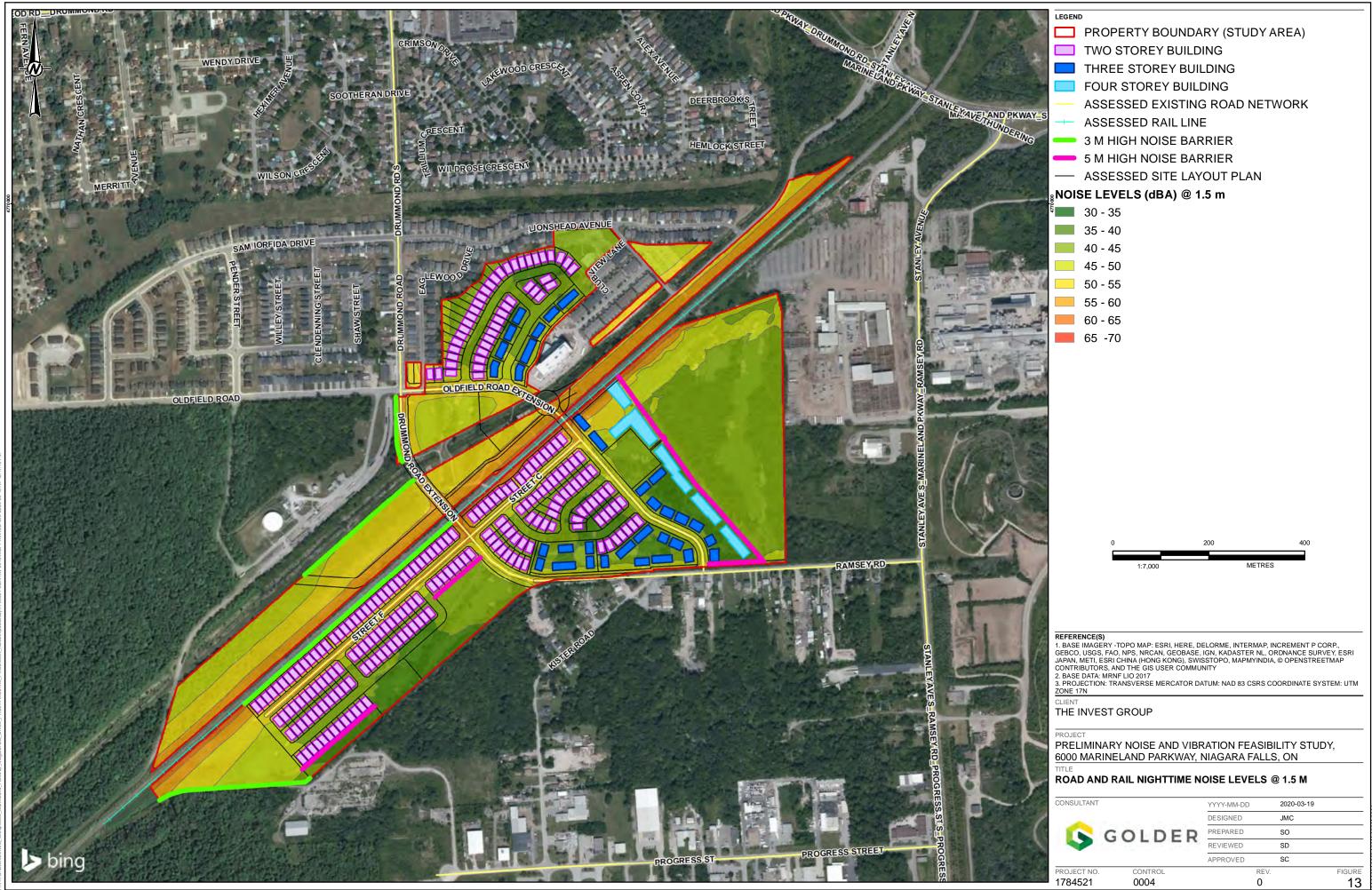


THE SHOWN, THE SHEET DOES NOT MATCH WHAT IS SHOWN, THE SHEET

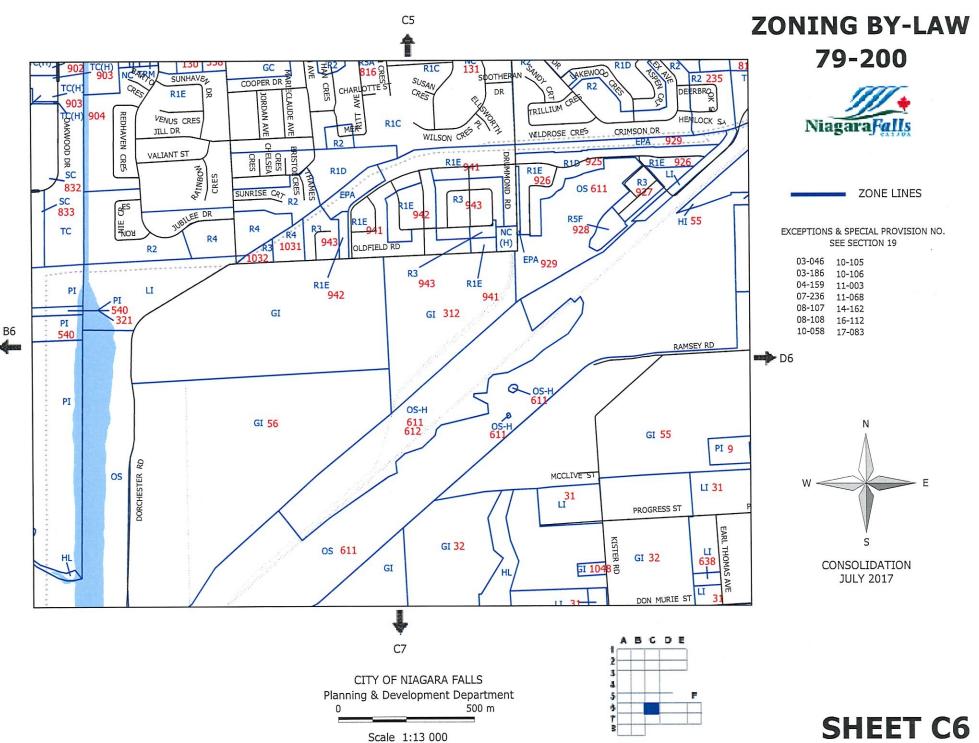


25m 22




PERMIN IF THIS MEASUREMENT DOES NOT MATCH WHAT IS SHOW N, THE SH

75000 IF THIS MEASUREMENT DOES NOT MATCH WHAT IS SHOWN, THE SHEET SIZE HAS BEEN MO


36.000 IF THIS MEASUREMENT DOES NOT MATCH WHAT IS SHOWN, THE SHEET SIZE HAS BE

APPENDIX A

Existing Conditions Documents

Print Date: AUGUST 2017

June 11, 2018

Project No. 1784521

Hello Operation / Environmental Manager,

Golder Associates Ltd. (Golder) has been retained by Prenix Associates International Limited (Prenix) to complete a Noise and Vibration Study (the Study) for a proposed development, which will include residential land uses, on the Thundering Waters Golf Course lands (Project). The Project is currently in the pre-planning visioning stage and various feasibility studies are currently under way. To support with the preparation of a thorough Study, we are respectfully requesting any noise data you may wish to share.

Golder is reaching out to nearby industries for input and support with existing studies. Golder will be carrying out site-specific studies that will include a land use compatibility review between the Project and nearby industrial facilities using publicly available information. This review will involve developing a better understanding of the current noise and vibration emissions due to the industrial facilities in the surrounding area and help identify potential concerns.

To facilitate this review, we are requesting you consider sharing, for the purposes of the Project, any relevant noise and vibration studies or information prepared for your facility which includes but is not limited to Acoustic Assessment Reports (AARs), Environmental Compliance Approvals (ECAs) (Air Quality and Noise), noise prediction modelling files, Noise Impact Studies and/or Vibration Impact Studies.

In addition, please be advised that Golder will be conducting noise measurements near the Project and nearby industries on publicly accessible property in the coming weeks.

If you have any noise and vibration information you would like to share, or require further clarification, please feel free to contact the undersigned.

Thank you in advance for you time and cooperation.

Sincerely yours,

Golder Associates Ltd.

Stepa Cial

Stefan Cicak, B.A.Sc., P.Eng. *Golder Associates Ltd.* 6925 Century Avenue, Suite#100, Mississauga, ON L5V 2Y8 Email: scicak@golder.com Telephone: 1-905-567-6100 ext 1492

(On behalf of Prenix Associates International Limited)

- 1. Setback of dwellings from the railway right-of-way to be a minimum of 15 metres. While no dwelling should be closer to the right-of-way than the specified setback, an unoccupied building, such as a garage, may be built closer.
- 2. A clause should be inserted in all offers of purchase and sale or lease and in the title deed or lease of each dwelling within 300m of the railway right-of-way, warning prospective purchasers or tenants of the existence of the Railway's operating right-of-way; the possibility of alterations including the possibility that the Railway may expand its operations, which expansion may affect the living environment of the residents notwithstanding the inclusion of noise and vibration attenuating measures in the design of the subdivision and individual units, and that the Railway will not be responsible for complaints or claims arising from the use of its facilities and/or operations.
- 3. Any proposed alterations to the existing drainage pattern affecting railway property must receive prior concurrence from the Railway, and be substantiated by a drainage report to be reviewed by the Railway.
- 4. A 1.83 metre high chain link security fence be constructed and maintained along the common property line of the Railway and the development by the developer at his expense, and the developer is made aware of the necessity of including a covenant running with the lands, in all deeds, obliging the purchasers of the land to maintain the fence in a satisfactory condition at their expense.
- 5. Any proposed utilities under or over railway property to serve the development must be approved prior to their installation and be covered by the Railway's standard agreement.

800 - 1290 Central Parkway West Mississauga, Ontario Canada L5C 4R3 T 905 803 3429 E josie_tomei@cpr.ca

November 6, 2018

Via email: scicak@golder.com

Stefan Cicak Golder Associates Ltd. 6925 Century Avenue Suite 100 Mississauga, ON L5N 7K2

Dear Sir/Madam:

Re: Rail Traffic Volumes, CP Mileage 4.0, Montrose Subdivision, Marineland Parkway, Niagara Falls

This is in reference to your request for rail traffic data in the vicinity of Marineland Parkway in the City of Niagara Falls. The study area is located in the vicinity of mile 4.0 of our Montrose Subdivision, which is classified as an Industrial Spur line.

The information requested is as follows:

1.	Number of freight trains between 0700 & 2300: Number of freight trains between 2300 & 0700:	0 2
2.	Maximum cars per train freight:	20
3.	Number of locomotives per train:	2

- 4. Maximum permissible train speed: 25 mph (normal speed 15 mph)
- 5. Grade crossings are located at Biggar Road, Grassy Brook Road and Montrose Road, however whistling is prohibited at these locations. Please note, the whistle may be sounded if deemed necessary by the train crew for safety reasons at any time.
- 6. The Montrose Spur services industrial facilities in the area only. There is a main track and siding with additional leads into industrial facilities all with jointed track. There is also a cross-over switch in the study area.

The information provided is based on recent rail traffic. Variations of the above may exist on a day-today basis. Specific measurements may also vary significantly depending on customer needs.

Yours truly,

amer

Josie Tomei SR/WA Specialist Real Estate Sales & Acquisitions – Ontario

REPORT TO:Mayor James M. Diodati
and Members of Municipal CouncilSUBMITTED BY:Planning, Building & DevelopmentSUBJECT:PBD-2018-71
26CD-11-2018-09, Proposed Plan of Condominium (Standard)
7711 Green Vista Gate
Applicant: Upper Vista Niagara Falls Development Corp. c/o Carol
Han
Agent: David Tang, Partner – Miller Thomson, LLP

RECOMMENDATION

- 1. That the Standard Plan of Condominium for 7711 Green Vista Gate be draft approved subject to the conditions in Appendix A;
- 2. That the Mayor or designate be authorized to sign the draft plan as "Approved" 20 days after notice of Council's decision has been given as required by the *Planning Act*, provided no appeals of the decision have been lodged;
- 3. That draft approval be given for three years, after which approval will lapse unless an extension is requested by the developer and granted by Council; and
- 4. That the Mayor and City Clerk be authorized to execute the Condominium Agreement and any required documents to allow for the future registration of the condominium when all matters are addressed to the satisfaction of the City Solicitor.

EXECUTIVE SUMMARY

Upper Vista Niagara Falls Development Corp. is constructing a 10 storey, 150 unit apartment building on the land known as 7711 Green Vista Gate. A Standard Plan of Condominium is proposed to divide the apartment building so that the units can be individually owned. The driveway, visitor parking, landscaping and amenity areas will be common elements to the condominium. A site plan agreement was registered for the development on May 9, 2018 which has enabled the applicant to obtain Building Permits and start construction. The condominium application is supported for the following reasons:

- The development complies with the Provincial Policy Statement and conforms to the Places to Grow Plan for the Greater Horseshoe which encourages the development of complete communities with a diverse mix of land uses and range of housing types;
- The development complies with the Regional Official Plan promoting higher densities within the Urban Area. The condominium will provide an alternative form of housing in the Thundering Waters neighbourhood;

- The development is in conformity with the City's Official Plan and Zoning By-law No. 79-200, as amended and varied and, will be compatible with the surrounding development;
- The Plan of Condominium will allow individual ownership of the dwelling units; and
- City and Regional interests will be addressed through the fulfillment of the conditions contained in Appendix A.

BACKGROUND

Proposal

The applicant is constructing a 10 storey, 150 unit apartment building on the land known as 7711 Green Vista Gate. Refer to Schedule 1 for the location of the parcel. The development is proceeding in accordance with a site plan agreement which was registered on the land on May 9, 2018. Refer to Schedule 2 for the site plan. The applicant has requested approval of a Standard Plan of Condominium to permit individual ownership of the dwelling units and common ownership of the amenities. The driveway, visitor parking area, amenity area and landscaped open space will be owned in common by the condominium. Schedules 3 and 4 illustrate the floor layout of the project.

Site Conditions and Surrounding Land Uses

The 10 storey, 150 unit apartment building is under construction on the site. The abutting lands to the south, west and east contain the Thundering Waters Golf Course. A feeder railway line is located on the east side to service the Stanley Business Park. Properties to the northeast are developed with on-street townhomes followed by detached dwellings.

Circulation Comments

- Canada Post
 - No objections, subject to meeting the condition listed in Appendix A.
- Enbridge Gas
 - No objections, subject to meeting the conditions listed in Appendix A.
- Canadian Pacific Railway
 - No objections, subject to meeting the condition listed in Appendix A.
- Regional Municipality of Niagara
 - No objections, subject to meeting the conditions listed in Appendix A.

ANALYSIS/RATIONALE

1. **Provincial Policy Statement and Regional Policy**

The subject land is located within a Settlement Area under the Provincial Policy Statement (PPS) and within the Delineated Built-Up Area under the Places to Grow Plan for the Greater Golden Horseshoe (Growth Plan). The PPS directs growth to settlement areas, and encourages the efficient use of land, resources, infrastructure and public service facilities that are planned or available. The Growth Plan contains policies that encourage the development of complete communities with a diverse mix of land uses and range of housing types, taking into account affordable housing and densities.

The subject land is designated Urban Area in the Regional Official Plan (ROP). A full range of residential, commercial and industrial uses are permitted generally within the Urban Area designation, subject to the availability of adequate municipal services and infrastructure. The ROP promotes higher density development in Urban Areas and supports growth that contributes to the overall goal of providing a sufficient supply of housing that is affordable, accessible, and suited to the needs of a variety of households and income groups in Niagara. Once completed, the development will provide 150 new dwelling units within the Urban Area. The condominium apartment units will provide an alternative form of housing in this neighbourhood, which satisfies the policy directions from a Provincial and Regional Policy perspective.

2. Official Plan

The subject land is designated Residential and Special Policy Area "53" in the City's Official. The development conforms to the Official Plan as follows:

- A mix of townhouse and detached dwelling units and one apartment building are anticipated in this area to provide a maximum of 321 dwelling units.
- The proposed condominium is the anticipated apartment building.
- The construction of the apartment building was made subject to site plan control which addressed site grading, landscaping, lighting and storm water management.
- The surrounding area was developed as a vacant land condominium. The subject block is a parcel in the vacant land condominium. The proposed standard plan of condominium will allow individual ownership of the dwelling units in the apartment building.

3. Zoning By-law

The subject property is zoned Residential Apartment 5F Density (R5F) in accordance with Zoning By-law No. 79-200, as amended by By-law No. 2011-003, and further amended by Committee of Adjustment Application (A-2015-053). Minor variances were granted by the Committee of Adjustment on January 19, 2016 for a partial 11th

storey, including a party room, lounge/dining area, the provision of 1.25 parking spaces per unit and a minimum of 38.65 % of the parcel being landscaped.

The Committee of Adjustment required the owners of 7709 and 7714 Green Vista Gate and a spokesperson for the neighbourhood to be involved in the site plan review process. The development conforms to applicable zoning regulations and the site plan was approved with the acceptance of the neighbourhood.

4. Noise, Condominium Design and Conditions of Approval

A Noise Feasibility Study prepared by J.E Coulter Associated Limited (dated February 8, 2017) was submitted as part of the site plan approval application. The study found that sound levels in the area exceeded the Ministry of Environment, Conservation and Parks' (MECP) Noise Guidelines. The following mitigations measures were recommended by the Noise Feasibility Study:

- (a) Provision of central air conditioning for all units;
- (b) At the time of final design, the rooftop mechanical equipment be reviewed to ensure the building itself and the low-density housing to the north will not be impacted (NOTE: the preliminary review does not suggest there will be any impacts from the mechanical equipment, which is proposed to be shielded by a mechanical penthouse and roof parapet);
- (c) Inclusion of warning clauses in all Agreements of Purchase and Sale or Lease for all units.

The Niagara Region has included the above noted mitigating measures as conditions in Appendix A.

The Study also found a significant noise impact from the stationary noise sources (in excess of 27dB above MECP's Noise Guidelines), which is generated from scrap steel being disposed in waste bins (impulse noise) at Salit Steel. The Study recommended mitigation for noise generated by Salit Steel in the form of Salit Steel reviewing its scrap handling process and placement of a 3m high, acoustically lined, solid, 3 sided enclosures directly adjacent to the scrap bins.

A noise reduction agreement was completed in April 2018 by Evertrust Development Group Canada Inc. and Upper Canada Vista Niagara Falls Development Corp with Myer Salit Limited and Stanley-Zelco Limited. Salit Steel agreed to reduce the sound levels emanating from the processing plant and lands they use to the limits applicable to a Class 4 Area as set out in NPC-300. By agreement the subject property can be subjected to Class 4 noise levels and this agreement is binding on future owners of all affected properties. Warning clauses to this effect were included in the site plan agreement and are recommended to be included in the condominium agreement as well.

The plan of condominium will accommodate the intended division of the dwelling units in the apartment building which will allow for individual ownership. The plan includes above and below ground parking areas, landscape and amenity areas. The developer will be required to enter into a condominium agreement with the City. The agreement will address any necessary works and warning clauses.

The City registered the site plan agreement and the applicant applied for the Building Permits. The City is holding a Letter of Credit (LOC) to ensure compliance with the Site Plan Agreement. The LOC will not be released until all the above ground site serving and landscape works are completed to the City's satisfaction. To ensure site works are completed when ownership is transferred to a condominium corporation, Staff recommend the inclusion of a condition requiring substantial completion and certification of these site works prior to final plan approval. The 5% cash-in-lieu of parkland dedication for the subject property was taken as part of the Thundering Waters Village Vacant Land Condominium.

The majority of the standard development issues, including above ground servicing and grading, transportation and landscaping have been addressed in the site plan agreement. Appendix A includes the recommended conditions of approval from Canada Post, Enbridge Gas, Canadian Pacific Railway, Niagara Region, and provision of any necessary easements with a final review to confirm zoning and site plan compliance prior to registration of the condominium.

Under Provincial regulations, public notice and the holding of a public meeting are not required prior to Council approving a Standard Plan of Condominium. Matters of public interest were addressed at the zoning approval stage and the site plan stage.

5. Waste Collection and Conditions of Approval

Waste Collection for the Proposed Building

Condominium Apartment Developments are able to receive waste collection through the local municipality. However, in order for this service to be provided, the developer and/or subsequent owner shall comply with The Regional Municipality of Niagara's Policy's for Collection of Material by Way of Entry on Private Property. The applicant is advised that a key element for garbage collection is that the site is to be adequate for waste collection vehicles to access the site and then leave the site without the need to back out of the driveway. This is not the case.

Therefore, it should be noted that private waste collection by the condominium corporation will be provided and appropriate clauses shall be included in the Draft Plan of Condominium Agreement and inserted in all Agreements of Purchase and Sale or Lease for each dwelling prior to closing. Appendix A includes a condition with regard to waste collection.

Waste Collection for the Existing Townhouse Development

The subject property currently provides a cul-de-sac turnaround for waste collection vehicles to service the existing townhomes on the south leg of Green Vista Gate. A turnaround must be maintained on the subject property in order for these existing residents to continue to receive Regional waste collection service.

A review of the proposed development layout indicates a waste collection vehicle turnaround on the northwesterly end of the property by using the existing driveways. The developer and/or subsequent owner have designed the turnaround as per The Regional Municipality of Niagara's standards. In addition to the design, the condominium apartment developer/owner shall make arrangements with the neighbouring property for a turnaround on the current development property and any necessary agreements to continue waste service for the properties know as 7660-7714 Green Vista Drive. Any agreement should stipulate that the property owner agrees to the use of their lands for Regional waste collection vehicles (garbage and recycling) to turnaround on a weekly basis.

Additionally, it should be noted that a turnaround, whether a temporary cul-de-sac or the final paved turnaround as shown, must be maintained during all stages of construction for the existing residents without service disruption. Furthermore, the plans should indicate "No Parking" signs along the route in order for waste collection vehicles to move unencumbered. Appendix A includes conditions that address the above requirements with regard to waste collection for the neighbours.

FINANCIAL/STAFFING/LEGAL IMPLICATIONS

The proposed condominium will generate revenue through property taxes. There are no other financial implications.

CITY'S STRATEGIC COMMITMENT

The proposed condominium is part of a well-planned City as envisioned by the City's Official Plan and Zoning By-law 79-200, as amended.

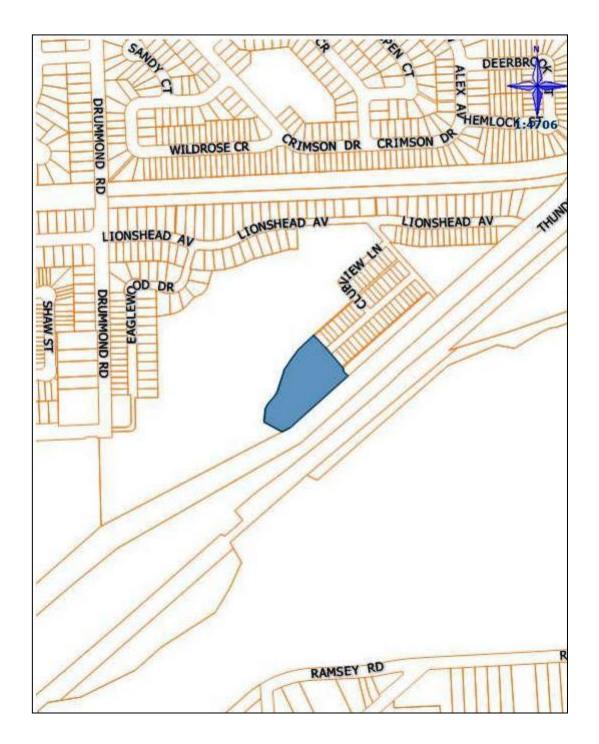
LIST OF ATTACHMENTS

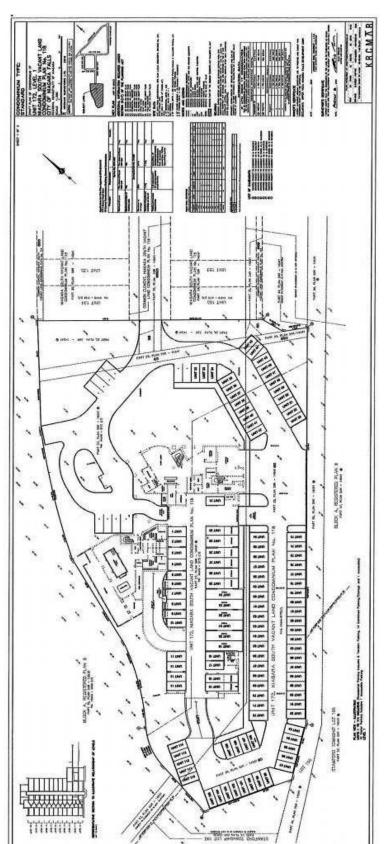
- Schedule 1 Location Map
- Schedule 2 Site Plan
- Schedule 3 and 4 Floor Layout
- Appendix A Conditions of Draft Approval

Recommended by:

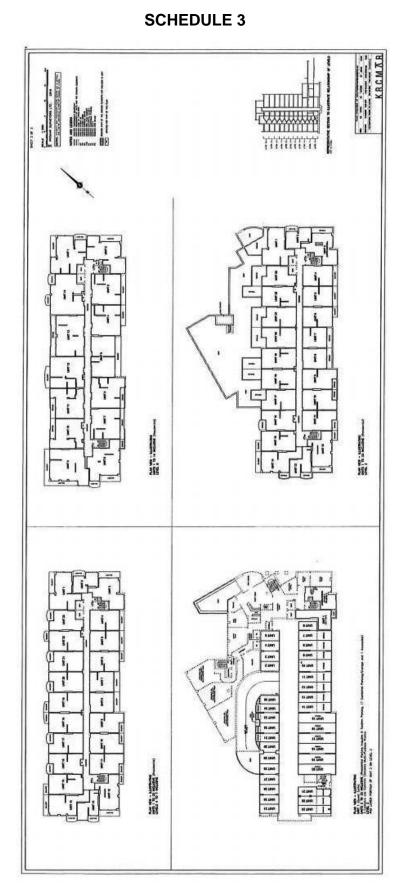
Alex Herlovitch, Director of Planning, Building & Development

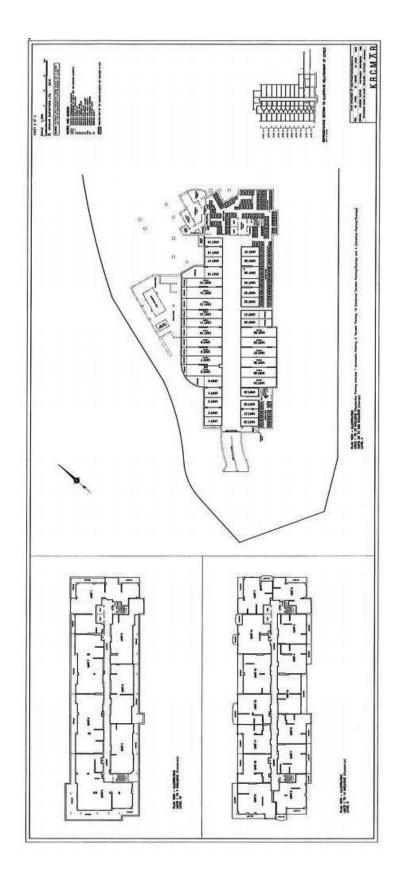
Respectfully submitted:


Ken Todd, Chief Administrative Officer


N.DeBenedetti:mb Attach.

S:\PDR\2018\PBD-2018-71, 26CD-11-2018-009, Proposed Plan of Condominium, 7711 Green Vista.docx


PBD-2018-71 November 13, 2018


SCHEDULE 2

PBD-2018-71 November 13, 2018

PBD-2018-71 November 13, 2018

APPENDIX A

Conditions for Draft Plan Approval

- 1. Approval applies to the Draft Plan of Condominium (Standard) prepared by Maja Krcmar, dated August 8, 2018, showing the 150 unit apartment building as well as the common element areas for the driveway, visitor parking, landscape and amenity areas.
- 2. The developer enter into a condominium agreement with the City, to be registered on title, to satisfy all requirements, financial and otherwise, related to the division of the land.
- 3. The developer submits a Solicitor's Certificate of Ownership for the condominium land to the City Solicitor prior to the preparation of the condominium agreement.
- 4. The developer submits to the City all necessary drawings and information to confirm zoning and confirm substantial completion and certification of site works in accordance with the site plan agreement.
- 5. The developer supply, install and maintain a centralized mail facility (Lock Box Assembly) at their expense. The Lock Box Assembly must be installed within a common lobby, common indoor or sheltered space and the developer must advise Canada post of the installation date of the Lock Boxes Assembly and the assignment of the unit numbers.
- 6. a) The applicant shall contact Enbridge Gas Distribution's Customer Connections department by emailing SalesArea80@enbridqe.com for service and meter installation details and to ensure all gas piping is installed prior to the commencement of site landscaping (including, but not limited to: tree planting, silva cells, and/or soil trenches) and/or asphalt paving.
 - b) If the gas main needs to be relocated as a result of changes in the alignment or grade of the future road allowances or for temporary gas pipe installations pertaining to phase construction, all costs are the responsibility of the applicant.
 - c) Easement(s) are required to service this development and any future adjacent developments. The applicant will provide all easement(s) to Enbridge Gas Distribution at no cost.
 - d) In the event a pressure reducing regulator station is required, the applicant is to provide a 3 metre by 3 metre exclusive use location that cannot project into the municipal road allowance. The final size and location of the regulator station will be confirmed by Enbridge Gas Distribution's Customer Connections department. For more details contact <u>SalesArea80@enbridge.com</u>.
- 7. The following clause required to be in all offers to purchase, agreements of purchase and sale or lease and in the title deed or lease of each dwelling:

Canadian Pacific Railway or its assigns or successors in interest has or have a railway right-of-way and yard located within 300 metres from the land subject hereof with operations conducted 24 hours a day, 7 days a week including the shunting of trains and the idling of locomotives. There may be alterations to or expansions of the railway facilities and/or operations in the future, which alterations or expansions may affect the living environment of the residents in the vicinity, notwithstanding the inclusion of any noise and vibration attenuating measures in the design of the development and individual dwellings. CPR will not be responsible for complaints or claims arising from the use of its facilities and/or its operations on, over or under the aforesaid right-of-way and yard.

8. That the Owner agrees to include the following warning clauses in all Agreements of Purchase and Sale or Lease for all units within the development:

"Purchasers/tenants are advised that despite the inclusion of noise control features in the development and within the building units, sound levels due to increasing rail traffic may on occasions interfere with some activities of the dwelling occupants as the sound levels exceed the Municipality of the Niagara Region and the Ministry of the Environment, Conservation and Parks' noise criteria."

"This dwelling unit has been supplied with a central air conditioning system which will allow windows and exterior doors to remain closed, thereby ensuring that the indoor sound levels are within the Municipality of the Niagara Region and the Ministry of the Environment and Climate Change's noise criteria."

"Purchasers are advised that due to the proximity of the adjacent industries (Salit Steel at 7711 Stanley Avenue and ChemTrade at 6300 Oldfield Road), noise from these industries may at time be audible."

"All persons intending to acquire an interest in the real property by purchase or lease are advised of the existence of the right-of-way of the Canadian Pacific Railway. In the future, it is possible that such rail facilities and operations may be altered or expanded, which expansion or alteration may affect the living environment of residents despite the inclusion of noise attenuating measures in the design of the site and individual units and that the Canadian Pacific Railway will not be responsible for complaints or claims arising from its use of its facilities and/or arising from its operations."

9. The owner agrees to insert in all offers and agreements of purchase and sale or lease for all dwelling units to survive closing, the following clauses:

"Purchasers/Tenants are advised that the property has an easement for the Regional 1050mm watermain and a Regional 600mm/1200mm sewage line and are advised that should any future maintenance, construction and/or emergency work be required, access to the parking lot and underground parking level may be restricted to the dwelling occupants. Niagara Region has no responsibility to accommodate temporary parking during any work and the owner/condominium corporation shall be solely responsible for arranging interim parking.

And

Purchasers/Tenants are advised that the property has an easement for the Regional1050mm watermain and a Regional 600mm/1200mm sewage line and are advised that should any future maintenance, construction and/or emergency work be required and that it may generate noise and odour which may occasionally interfere with some activities of the dwelling occupants."

10. That the Owner agrees to include the following warning clauses in all Agreements of Purchase and Sale or Lease for all units within the development:

"Purchasers/Tenants are advised that due to the site layout, waste collection for the building will be provided through a private waste collector arranged by the Condominium Corporation and not Niagara Region."

- 11. The owner/condominium corporation shall be responsible for any restoration work of the easement and any structures (i.e. landscaping, irrigation, etc.) beyond the standard restoration procedures (i.e. sod, asphalt) provided by Niagara Region, in the event that any future maintenance or repair of the Regional lines is required to service the Regional watermain and/or sanitary sewer on the easement.
- 12. That the owner/condominium corporation of the property acknowledges that the development does not comply with the Regional Municipality of Niagara Policy C3.C007, Requirements for Commencement of Collection for New and Redevelopments for Regional waste collection of the units at 7711 Green Vista Gate and that private waste collection will be provided for the site.
- 13. That the developer and/or subsequent owner shall enter into an agreement with the neighbouring owner/condominium management corporation (for Units 7660-7714 Green Vista Gate) acknowledging and permitting the use of the private property at 7711 Green Vista Gate to contain a turnaround for Regional waste collection vehicles to service the neighbouring residences. Any agreement for maintenance of the turnaround shall be between the two parties. The turnaround and any necessary maintenance, "No Parking" signage, shall comply with the Regional Municipality of Niagara Policy C3.C007, Requirements for Commencement of Collection for New and Redevelopments, to the satisfaction of the Regional Public Works Department.
- 14. That the owner/condominium corporation shall enter into an indemnity agreement with the Regional Municipality of Niagara Public Works Department to enter onto the lands at 7711 Green Vista Gate, with Regional waste collection vehicles servicing the residents 7660-7714 Green Vista Gate.
- 15. That developer/subsequent owner provide a temporary cul-de-sac or turnaround designed for waste collection vehicles during construction which must be maintained during all stages of construction of the 7711 Green Vista Gate for the existing residents (Units 7660-7714 Green Vista Gate) without service disruption.
- 16. That the owner provides a written acknowledgement to Niagara Region stating that draft approval of this condominium does not include a commitment of servicing allocation by Niagara Region as servicing allocation will not be assigned until the plan

is registered and that any pre-servicing will be at the sole risk and responsibility of the owner.

17. That the owner submits a written undertaking to Niagara Region that all offers and agreements of Purchase and Sale, which may be negotiated prior to registration of this condominium, shall contain a clause indicating that a servicing allocation for this development will not be assigned until the plan is registered, and a similar clause be inserted in the condominium agreement.

Notes:

- 1. Prior to granting final plan approval, the City must be in receipt of written confirmation that the requirements of each condition have been met and all fees have been paid to the satisfaction of the Niagara Region.
- 2. Prior to final approval for registration, a copy of the draft condominium agreement for the proposed development should be submitted to the Niagara Region for verification that the appropriate clause pertaining to this condition has been included. A copy of the executed agreement shall also be provided prior to registration.
- 3. In order to request clearance of the above noted Regional conditions, a letter outlining how the conditions have been satisfied, together with all studies and reports (two hard copies and a PDF digital copy), the applicable review fee, and the draft condominium agreement shall be submitted to the Niagara Region by the applicant as one complete package, or circulated to the Niagara Region by the City of Niagara Falls.

Clearance of Conditions

Prior to granting approval to the final plan, Planning & Development requires written notice from the following applicable agencies indicating that their respective conditions have been satisfied:

- Canada Post for Condition 5
- Enbridge Gas Distribution Inc. for Condition 6
- Canadian Pacific Railway for Condition 7
- Region of Niagara for Conditions 8-17 (inclusive)

APPENDIX B

Noise Monitoring Program

Filename #	Measurement Location	LAeq	LF(min)	LAFmax	LAF1.00	LAF5.00	LAF10.00	LAF90.00	LAF99.00
80	Measurement 7	50.4	41.3	65.8	58.8	55.0	53.5	44.3	42.8
81	Measurement 6	48.2	41.5	67.9	54.6	51.7	50.5	44.3	42.9
83	Measurement 5	47.2	40.3	62.0	55.4	51.6	49.3	42.6	41.1
85	Measurement 4	51.8	41.5	71.0	62.1	57.8	54.7	43.9	42.5
86	Measurement 3	50.0	41.5	72.6	61.2	54.0	51.5	43.8	42.6
87	Measurement 2	50.7	42.6	69.9	60.2	54.6	52.2	45.1	44.0
88	Measurement 1	50.7	42.0	67.9	59.7	55.9	53.7	44.4	43.2
89	Measurement 10	49.8	43.0	67.0	57.6	54.4	52.6	45.1	44.1
90	Measurement 9	47.1	41.5	61.0	55.5	51.8	49.5	43.7	42.7
91	Measurement 8	50.1	39.3	68.5	58.9	55.0	53.2	42.6	40.6
92	Measurement 7	51.5	40.4	69.3	62.5	54.7	52.7	44.7	41.8

Filename #	Measurement Location	LAeq	LF(min)	LF(max)	LAF1.00	LAF5.00	LAF10.00	LAF50.00	LAF90.00	LAF99.00
56	CAL	94.0	94.0	94.0	94.0	94.0	94.0	94.0	94.0	94.0
57	Location 16	56.3	42.2	69.4	66.7	63.5	60.5	48.9	44.0	42.9
58	Location 21	57.7	56.3	58.9	58.6	58.4	58.2	57.7	57.2	56.7
59	Location 17	53.2	51.0	55.5	55.2	54.9	54.5	53.0	52.0	51.4
60	Location 2	63.1	46.6	83.3	77.1	67.1	61.8	50.2	48.5	47.1
61	Location 8A	67.5	65.1	72.7	72.1	69.8	68.7	67.0	66.2	65.7
62	Location 8B	58.6	51.7	67.8	65.9	64.3	62.0	55.1	52.3	51.9
63	Location 9	60.9	56.1	67.3	66.5	65.1	63.7	60.1	56.5	56.2
64	Location 8C	60.1	58.7	65.5	64.0	61.0	60.8	59.9	59.1	58.9
65	Location 1	62.5	40.6	80.0	78.0	63.4	57.5	46.5	43.8	41.8
66	Location 7	57.6	55.4	60.1	59.7	59.0	58.6	57.5	56.3	55.6
67	Location 5	54.4	52.9	57.8	56.7	55.6	55.3	54.2	53.4	53.1
68	Location 4A	50.9	49.3	55.4	54.9	52.8	51.6	50.5	50.0	49.6
69	Location 4B	53.2	51.8	55.1	54.7	54.1	54.0	53.1	52.5	52.1
70	Location 15	60.8	44.6	78.0	73.3	66.4	64.1	53.5	47.1	45.2
71	Location 10 & 11	67.2	55.0	81.0	76.8	73.0	70.3	64.0	57.1	55.8
72	Location 12	51.3	41.5	67.4	62.2	56.6	53.2	47.3	44.6	43.0
73	Location 20	56.3	38.9	73.5	69.4	61.9	57.4	49.1	43.6	40.5

Calibration Certificate

Part Number: 716A0403 Description: MINIMATE PLUS W/EXT. GEO Serial Number: BE19586 Calibration Date: May 17, 2018 Calibration Equipment: 718A1501

Instantel certifies that the above product was calibrated in accordance with the applicable Instantel procedures. These procedures are part of a quality system that is designed to assure that the product listed above meets or exceeds Instantel specifications

Instantel further certifies that the measurement instruments used during the calibration of this product are traceable to the National Institute of Standards and Technology; or National Research Council of Canada. Evidence of traceability is on file at Instantel and is available upon request.

The environment in which this product was calibrated is maintained within the operating specifications of the instrument.

Please note that the sensor check function is intended to check that the sensors are connected to the unit, installed in the proper orientation and sufficiently level to operate properly. This function should not be confused with a formal calibration, which requires the sensors be checked against a reference that is traceable to a known standard Instantel recommends that products be returned to Instantel or an authorized service and calibration facility for annual calibration.

Calibrated By:

el and Instante

Li Pan

stante

trademarks

🥼 Instantel

<u>Instantel</u>

aniev Worl

Calibration Certificate

Part Number: 714A9701 Description: TRIAXIAL GEOPHONE (ISEE) Serial Number: BG12444 Calibration Date: May 17, 2018 Calibration Equipment: 714J7402

Instantel certifies that the above product was calibrated in accordance with the applicable Instantel procedures. These procedures are part of a quality system that is designed to assure that the product listed above meets or exceeds Instantel specifications

Instantel further certifies that the measurement instruments used during the calibration of this product are traceable to the National Institute of Standards and Technology; or National Research Council of Canada. Evidence of traceability is on file at Instantel and is available upon request.

The environment in which this product was calibrated is maintained within the operating specifications of the instrument.

Please note that the sensor check function is intended to check that the sensors are connected to the unit, installed in the proper orientation and sufficiently level to operate properly. This function should not be confused with a formal calibration, which requires the sensors be checked against a reference that is traceable to a known standard. Instantel recommends that products be returned to Instantel or an authorized service and calibration facility for annual calibration.

Calibrated By:

and instant

Li Pan

re trademarks

nlev Wo

🔄 Instantel

RION SERVICE CENTER CO., LTD. 2-22-2 Hyoe, Hachioji, Tokyo 192-0918 JAPAN Tel. + 81-42-632-1122 Fax. + 81-42-632-1140

To 00360372

Issuing Date: May 9, 2017

Service Report

Dear Sir/Madame,

We are glad to inform you that following check/adjustment, repair and calibration have been carried out on your instrument:

> DA-21, 4 channel data recorder Serial Number: 00360372 Option:

Your Declaration: The instrument does not power on. Repair and calibration with test report and calibration certificate are required.

- The LCD did not operate correctly because of a loose connection of the Our Judgement: flexible cable.
- Cleaning and reconnection of the flexible cable and the connector. **Our Treatment:** Check and calibration. Attachment of test report and calibration certificate.

The instrument works well now, the followings show the check results: Check & adjustment: Good General: Good

RION SERVICE CENTER CO., LTD.

TShow

Manager, S&V Measuring Instruments Section

Traceability Certificate

	Test	Report
--	------	--------

🗹 Calibration Certificate

□ Traceability Flow Chart

Calibration Certificate (Copy)
 or
 Test Report (Copy)

of Primary Standards

RION SERVICE CENTER CO., LTD. 2-22-2 Hyoe, Hachioji, Tokyo 192-0918, JAPAN

TEST REPORT

for

4 channel DATA RECORDER

Model :	DA-21	

Serial No. :

00360372

Synthetic judgement

Pass

Condition : Temperature

Humidity

43 %RH

26 °C

Date :

May, 2, 2017

Signature :

RION SERVICE CENTER CO., LTD

TOKYO JAPAN

Input section

1.Frequency response

Settings: Voltage range 1V,HPF OFF,LPF OFF,Sampling frequency 20kHz×2.56 Reference input signal : 1kHz,1V (peak)

AC coupling

1 1			Tolerance			
(Hz)	value (dB)	ch1	ch2	ch3	ch4	(dB)
0.315	-3.0	0.90	0.80	0.90	0.80	± 1.0
1 k	Ref.		_		-	_
20 k	-0.1	0.00	0.00	0.10	0.10	± 0.5

DC coupling

Frequency	Reference		Tolerance			
(Ĥz)	value (dB)	ch1	ch2	ch3	ch4	(dB)
DC	0.0	-0.10	0.00	0.00	0.00	± 1.0
0.315	0.0	-0.10	-0.10	-0.10	-0.10	± 1.0
1 k	Ref.	_		<u> </u>	_	_

2.High-pass filter

Settings: Voltage range1V,Coupling AC,LPF OFF,Sampling frequency 20kHz×2.56 Reference input signal:1kHz,1V (peak)

	Frequency		D	Tolerance			
(Hz)	(Hz)	value (dB)	ch1	ch2	ch3	ch4	(dB)
	1	-28.0	-0.30	-0.30	-0.30	-0.30	± 3.0
5	5	-3.0	-0.10	-0.10	-0.10	-0.10	± 0.5
	1 k	Ref.	_	_	_	_	_

RION SERVICE CENTER CO., LTD

3.Low-pass filter

LPF	Frequency	Reference]	Tolerance			
(Hz)	(Hz)	value (dB)	ch1	ch2	ch3	ch4	(dB)
	20	Ref.				_	_
200	200	-3.0	0.00	0.00	0.00	0.00	± 1.0
	1 k	-28.3	0.40	0.30	0.30	0.30	± 3.0
	20	Ref.			_		
1k	1k	-3.0	0.10	0.00	0.00	0.00	± 1.0
	5k	-28.3	-0.10	-0.20	-0.20	-0.20	± 3.0
	· 20	Ref.			_		_
2k	2k	-3.0	0.00	0.00	0.00	0.00	± 1.0
	10k	-28.3	-1.90	-2.00	-2.00	-2.00	± 3.0

Settings: Voltage range 1V,Coupling AC,HPF OFF,Sampling frequency 20kHz×2.56 Reference input signal: 20kHz,1V(peak)

4.Offset

Settings: Coupling DC, HPF OFF, LPF OFF, Sampling frequency 20kHz×2.56

Input signal: Input terminals shorted

Reference: Full-scale point of each range

Voltage range		Tolerance			
(V)	ch1	ch2	ch3	ch4	(%)
1	0.00	0.00	0.00	0.00	±0.1
0.01	0.02	0.02	0.02	0.02	± 3.0

5.Voltage range control accuracy

Settings: Coupling AC, HPF OFF, LPF OFF, Sampling frequency 20kHz×2.56

Reference input signal: 1kHz,1V(peak)

Voltage	Input signal	Reference		Deviation from	n reference (d	B)	Tolerance	
range (V)	level (dB)	value (dB)	ch1	ch2	ch3	ch4	(dB)	
10	+10.0	+10.0	0.00	0.00	0.00	0.00		
3	+10.0	+10.0	-0.10	-0.10	-0.10	-0.10	± 0.3	
1	Ref.	0.0			_		_	
0.3	-10.0	-10.0	-0.10	-0.20	-0.10	-0.10		
0.1	-20.0	-20.0	0.00	-0.10	0.00	-0.10		
0.03	-30.0	-30.0	-0.10	-0.20	-0.10	-0.10	± 0.3	
0.01	-40.0	-40.0	-0.20	-0.20	-0.20	-0.20		

RION SERVICE CENTER CO., LTD TOKYO JAPAN

1505

6.Linearity

Settings: Coupling AC, HPF OFF, LPF OFF, Sampling frequency 20kHz×2.56 Reference input signal : 1kHz, 1V(peak)

	Reference		Tolerance			
(dB)	value (dB)	ch1	ch2	ch3	ch4	(dB)
2.0	2.0	0.00	0.00	0.00	0.00	± 0.2
0.0	Ref.	_	_	_		_
-80.0	-80.0	0.60	0.70	0.60	0.70	± 1.2

7.Phase differences between channels

Settings: Coupling AC,HPF OFF,LPF OFF,Sampling frequency 20kHz×2.56 Input: Equivalent to range full-scale

Voltage range (V)	Frequency (Hz)	Reference channel	Measurement value (degrees)			Tolerance
			ch2	ch3	ch4	(degrees)
3	50	ch1	0.002	-0.002	-0.017	± 0.03
		ch2		0.004	0.019	
		ch3	-	_	0.015	
	20k	ch1	-0.073	-0.032	-0.080	± 1.00
		ch2	_	-0.041	0.007	
		ch3	_	-	0.048	

8.Inherent noise FFT analysis

Settings: INPUT BNC, HPF OFF, LPF OFF, Sampling frequency 20kHz×2.56 Input: Shorted

FFT: 1024 lines, Hanning window, Average count 128 or more

Reference: Effective value of 1 Vpeak sine wave taken as 0 dB

Voltage range (V)	Measurement value (dB)							
	ch1	ch2	ch3	ch4	Tolerance (dB)			
1	-118.2	-117.5	-117.9	-116.7	-105 or less			

RION SERVICE CENTER CO., LTD

Monitor output section

9.Frequency response

Settings: Coupling AC, HPF OFF, LPF OFF, Sampling frequency 20kHz×2.56 Reference input signal : 1kHz, 1V(peak)

Frequency	Reference]	Deviation from	reference (dB))	Tolerance
(Hz)	value (dB)	ch1	ch2	ch3	ch4	(dB)
0.315	-3.0	0.82	0.81	0.81	0.84	± 1.0
1 k	Ref.	-		_	_	_
20 k	-0.1	0.12	0.12	0.12	0.13	± 0.3

10.Offset

Settings: Coupling DC, HPF OFF, LPF OFF, Sampling frequency 20kHz×2.56 Input signal: Input terminals shorted

Voltage range	Measurement value (mV)				Tolerance
(V)	ch1	ch2	ch3	ch4	(mV)
1	-0.05	0.43	0.72	0.88	±20
0.01	-0.22	4.60	1.75	3.22	± 75

11.Output level

Reference input signal : 1kHz,1V(peak) Reference: 3.16 Vpeak taken as 0 dB

		M	easurement valu	le (dB)	
Output AC voltage	ch1	ch2	ch3	ch4	Tolerance (dB)
	0.03	0.06	0.05	0.04	± 0.2

RION SERVICE CENTER CO., LTD

TOKYO JAPAN

Playback output section

12.Frequency response

Settings: Recall mode

Output: Equivalent to 3.16 V (peak)

Frequency	Reference	Deviation from reference (dB)				Tolerance
(Hz)	value (dB)	ch1	ch2	ch3	ch4	(dB)
0.315	0.0	-0.20	-0.20	-0.20	-0.20	± 0.2
1 k	Ref.	<u> </u>		—	-	_
20 k	-0.3	-0.10	0.00	0.00	-0.10	+0.3,-0.5

13.Offset

Settings: Recall mode

Output signal: Play signal equivalent to GND level

		Measurem	ent value (mV)		Talananaa
Output DC voltage	ch1	ch2	ch3	ch4	Tolerance (mV)
voltage	0.51	0.40	0.21	0.68	± 40

14.Linearity

Settings: Recall mode

Output: Equivalent to each D/A value

D/A value	Reference		Deviation from	m reference (m	V)	Tolerance
(HEX)	value (mV)	ch1	ch2	ch3	ch4	(mV)
7FFF	4079+α	14.22	8.83	8.93	7.79	± 81.6
0000	α (Reference)		_			-
8000	-4079+α	-13.68	-8.33	-8.93	-6.89	± 81.6

15.Phase differences between channels

Settings: Recall mode

Frequency	Reference	Measu	Tolerance		
(Hz) channel		ch2	ch3	ch4	(degrees)
	ch1	-0.002	-0.001	-0.001	
50	ch2	-	0.001	0.001	± 0.03
	ch3		-	0.000	1
	ch1	-0.274	-0.109	-0.547	
20k	ch2	_	0.165	-0.273	± 1.00
	ch3		_	0.273	1

RION SERVICE CENTER CO., LTD TOKYO JAPAN

1505

16.Tacho input

Input: 5 kHz, square wave

Measurement value (pulse/min)	Tolerance (pulse/min)
300000	303,001~296,999

17.Current consumption

Settings: Factory default settings

External power supply: 6.0 V

Backlight	Measurement value (mA)	Tolerance (mA)
ON	238	220~260

Operation checks

1.SD card operation

Format card in unit, store data, perform recall, verify that data files are readable in a computer.	Pass
2.LCD backlight on/off operation	_1 435
Verify that backlight can be turned on and off.	Pass
3.Key operation	
Verify that all keys operate normally.	Pass
4.LED operation	
Verify that all LEDs light up normally.	Pass
5. Multi-unit synchronized operation	
Connect two DA-21 units and verify that both operate in sync.	Pass
6.USB operation	
Verify that access from a computer is possible.	Pass

RION SERVICE CENTER CO., LTD

Certificate Number:50195781 Issue Date:09/05/2017

CALIBRATION CERTIFICATE

Customer name: 00360372 Description: 4ch DATA RECORDER Model name: DA - 2 1 Serial number: 0 0 3 6 0 3 7 2 Calibration date: 02/05/2017(DD/MM/YY) Ambient condition: Temperature 26°C Relative Humidity 43%

We hereby certify that the above product was tested and calibrated according to the prescribed RION SERVICE CENTER (RSC) procedures, and that it fulfills all requirements of the product specifications, as described in the attached test report.

The measuring equipment and reference devices used for testing and calibrating this unit are managed under the RSC traceability system and are traceable according to official Japanese standards and official standards of countries belonging to the International Committee of Weights and Measures.

RION PRIMARY STANDARDS

Model Description	Model Number	Controlled Number	Cal Due Date MM/YYYY
Digital multimeter	3458A	MY45051584	7/2017
Universal counter	53230A	MY50004233	3/2018

RSC WORK STANDARDS

Model	Model	Controlled	Cal Due Date
Description	Number	Number	MM/YYYY
Digital multimeter	34401A	US36051869	4/2018
Attenuator	TRA-501A	238193	7/2017
Frequency response analyzer	NF-5090	164816	4/2018

RION SERVICE CENTER CO., LTD.

Manager, Service Dept.

Things

Part Number: 720A2301 Description: MINIMATE PRO 4 Serial Number: MP12721 Calibration Date: February 27, 2018 Calibration Equipment: KEITHLEY S/N 1125403

Instantel certifies that the above product was calibrated in accordance with the applicable Instantel procedures. These procedures are part of a quality system that is designed to assure that the product listed above meets or exceeds Instantel specifications

Instantel further certifies that the measurement instruments used during the calibration of this product are traceable to the National Institute of Standards and Technology; or National Research Council of Canada. Evidence of traceability is on file at Instantel and is available upon request.

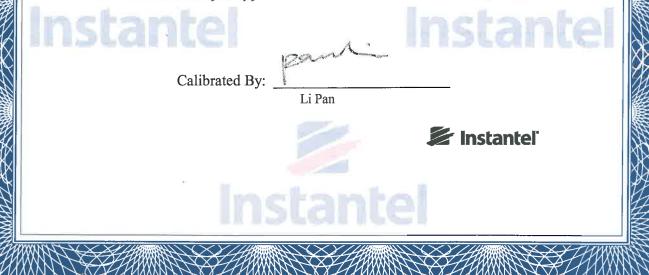
The environment in which this product was calibrated is maintained within the operating specifications of the instrument.

Please note that the sensor check function is intended to check that the sensors are connected to the unit, installed in the proper orientation and sufficiently level to operate properly. This function should not be confused with a formal calibration, which requires the sensors be checked against a reference that is traceable to a known standard. Instantel recommends that products be returned to Instantel or an authorized service and calibration facility for annual calibration.

Calibrated By:

Li Pan

Instante


Part Number: 720A2001 Description: ISEE TRIAXIAL GEOPHONE Serial Number: SE12724 Calibration Date: February 27, 2018 Calibration Equipment: 714J7401

Instantel certifies that the above product was calibrated in accordance with the applicable Instantel procedures. These procedures are part of a quality system that is designed to assure that the product listed above meets or exceeds Instantel specifications

Instantel further certifies that the measurement instruments used during the calibration of this product are traceable to the National Institute of Standards and Technology; or National Research Council of Canada. Evidence of traceability is on file at Instantel and is available upon request.

The environment in which this product was calibrated is maintained within the operating specifications of the instrument.

Please note that the sensor check function is intended to check that the sensors are connected to the unit, installed in the proper orientation and sufficiently level to operate properly. This function should not be confused with a formal calibration, which requires the sensors be checked against a reference that is traceable to a known standard. Instantel recommends that products be returned to Instantel or an authorized service and calibration facility for annual calibration.

Instantel

Part Number: 720A2301 Serial Number: MP12710 Calibration Date: February 26, 2018 Calibration Equipment: KEITHLEY S/N 1350688

Description: MINIMATE PRO 4

Instantel certifies that the above product was calibrated in accordance with the applicable Instantel procedures. These procedures are part of a quality system that is designed to assure that the product listed above meets or exceeds Instantel specifications

Instantel further certifies that the measurement instruments used during the calibration of this product are traceable to the National Institute of Standards and Technology; or National Research Council of Canada. Evidence of traceability is on file at Instantel and is available upon request.

The environment in which this product was calibrated is maintained within the operating specifications of the instrument.

Please note that the sensor check function is intended to check that the sensors are connected to the unit, installed in the proper orientation and sufficiently level to operate properly. This function should not be confused with a formal calibration, which requires the sensors be checked against a reference that is traceable to a known standard. Instantel recommends that products be returned to Instantel or an authorized service and calibration facility for annual calibration.

Calibrated By:

Xiaochuan He

Instantel

Instante

© 2010 Xmark Corporation. Instantel and Instantel logo are trademarks of The Stanley Works or its affiliates 71405201 Re

Instantel

Part Number: 720A2001 Serial Number: SE12723 Calibration Date: February 26, 2018 Calibration Equipment: 714J7403

Description: ISEE TRIAXIAL GEOPHONE

Instantel certifies that the above product was calibrated in accordance with the applicable Instantel procedures. These procedures are part of a quality system that is designed to assure that the product listed above meets or exceeds Instantel specifications

Instantel further certifies that the measurement instruments used during the calibration of this product are traceable to the National Institute of Standards and Technology; or National Research Council of Canada. Evidence of traceability is on file at Instantel and is available upon request.

The environment in which this product was calibrated is maintained within the operating specifications of the instrument.

Please note that the sensor check function is intended to check that the sensors are connected to the unit, installed in the proper orientation and sufficiently level to operate properly. This function should not be confused with a formal calibration, which requires the sensors be checked against a reference that is traceable to a known standard. Instantel recommends that products be returned to Instantel or an authorized service and calibration facility for annual calibration.

Calibrated By:

Xiaochuan He

stant

Instantel

Instantel

© 2010 Xmark Corporation. Instantel and Instantel logo are trademarks of The Stanley Works or its affiliates 71405201 Rev

Part Number: 716A0406 Description: MINIMATE PLUS W/EXT. GEO Serial Number: BE9118 Calibration Date: May 17, 2018 Calibration Equipment: 718A1501

Instantel certifies that the above product was calibrated in accordance with the applicable Instantel procedures. These procedures are part of a quality system that is

designed to assure that the product listed above meets or exceeds Instantel specifications Instantel further certifies that the measurement instruments used during the calibration

Instantel further certifies that the measurement instruments used during the calibration of this product are traceable to the National Institute of Standards and Technology; or National Research Council of Canada. Evidence of traceability is on file at Instantel and is available upon request.

The environment in which this product was calibrated is maintained within the operating specifications of the instrument.

Please note that the sensor check function is intended to check that the sensors are connected to the unit, installed in the proper orientation and sufficiently level to operate properly. This function should not be confused with a formal calibration, which

requires the sensors be checked against a reference that is traceable to a known standard instantel recommends that products be returned to Instantel or an authorized service and calibration facility for annual calibration.

Calibrated By:

Andrew Stockwell

Part Number: 714A8302 Description: Low Level Geophone X10 Serial Number: BQ21514 Calibration Date: March 21, 2018 Calibration Equipment: 714J5601

Instantel certifies that the above product was calibrated in accordance with the applicable Instantel procedures. These procedures are part of a quality system that is designed to assure that the product listed above meets or exceeds Instantel specifications

Instantel further certifies that the measurement instruments used during the calibration of this product are traceable to the National Institute of Standards and Technology; or National Research Council of Canada. Evidence of traceability is on file at Instantel and is available upon request.

The environment in which this product was calibrated is maintained within the operating specifications of the instrument.

Please note that the sensor check function is intended to check that the sensors are connected to the unit, installed in the proper orientation and sufficiently level to operate properly. This function should not be confused with a formal calibration, which requires the sensors be checked against a reference that is traceable to a known standard. Instantel recommends that products be returned to Instantel or an authorized service and calibration facility for annual calibration.

mats Age Instante

Martin Hogue

corporation. meternel and instanteness are trademarks of the shartley Works or its all

Calibration Certificate Instantel

Part Number: 716A0403 Description: MINIMATE PLUS W/EXT. GEO Serial Number: BE6146 Calibration Date: May 18, 2018 Calibration Equipment: 718A1501

Instantel certifies that the above product was calibrated in accordance with the applicable Instantel procedures. These procedures are part of a quality system that is designed to assure that the product listed above meets or exceeds Instantel specifications

Instantel further certifies that the measurement instruments used during the calibration of this product are traceable to the National Institute of Standards and Technology; or National Research Council of Canada. Evidence of traceability is on file at Instantel and is available upon request.

The environment in which this product was calibrated is maintained within the operating specifications of the instrument.

Please note that the sensor check function is intended to check that the sensors are connected to the unit, installed in the proper orientation and sufficiently level to operate properly. This function should not be confused with a formal calibration, which requires the sensors be checked against a reference that is traceable to a known standard. Instantel recommends that products be returned to Instantel or an authorized service and calibration facility for annual calibration.

Calibrated By:

and instant

Hamid Khan

istante

e trademarks

anley Works

Instantel

Calibration Certificate Instantel

Part Number: 714A9701 Serial Number: BG8722 Calibration Date: May 18, 2018 Calibration Equipment: 714J7401

Description: TRIAXIAL GEOPHONE (ISEE)

Instantel certifies that the above product was calibrated in accordance with the applicable Instantel procedures. These procedures are part of a quality system that is designed to assure that the product listed above meets or exceeds Instantel specifications

Instantel further certifies that the measurement instruments used during the calibration of this product are traceable to the National Institute of Standards and Technology; or National Research Council of Canada. Evidence of traceability is on file at Instantel and is available upon request.

The environment in which this product was calibrated is maintained within the operating specifications of the instrument.

Please note that the sensor check function is intended to check that the sensors are connected to the unit, installed in the proper orientation and sufficiently level to operate properly. This function should not be confused with a formal calibration, which requires the sensors be checked against a reference that is traceable to a known standard. Instantel recommends that products be returned to Instantel or an authorized service and calibration facility for annual calibration. Instantel

Calibrated By: ______

Hamid Khan

stant

Certificate Number 2017010368 Customer: Golder Associates Inc 6925 Century Avenue Mississauga, ON L5N 7K2, Canada

Model Number	831	Procedure Number	D0001.8378				
Serial Number	0001669	Technician	Ron Harris				
Test Results	Pass	Calibration Date	29 Sep 2017				
Initial Condition	AS RECEIVED same as shipped	Calibration Due	29 Sep 2019				
	No NEOLIVED same as smpped	Temperature	23.12 °C	± 0.25 °C			
Description	Larson Davis Model 831	Humidity	50.7 %RH	± 2.0 %RH			
	Class 1 Sound Level Meter	Static Pressure	86.61 kPa	± 0.13 kPa			
	Firmware Revision: 2.314						
Evaluation Metho	Dd Tested electrically using Larson D microphone capacitance. Data rep mV/Pa.						
Compliance Stan	dards Compliant to Manufacturer Specifi Calibration Certificate from proced	•	rds when comb	ined with			
	IEC 60651:2001 Type 1	ANSI S1.4-2014 Class 1					
	IEC 60804:2000 Type 1	ANSI S1.4 (R2006) Type	1				
	IEC 61252:2002	ANSI S1.11 (R2009) Clas	s 1				
	IEC 61260:2001 Class 1	ANSI S1.25 (R2007)					
	IEC 61672:2013 Class 1	ANSI S1.43 (R2007) Type	Гуре 1				

Issuing lab certifies that the instrument described above meets or exceeds all specifications as stated in the referenced procedure (unless otherwise noted). It has been calibrated using measurement standards traceable to the International System of Units (SI) through the National Institute of Standards and Technology (NIST), or other national measurement institutes, and meets the requirements of ISO/IEC 17025:2005. Test points marked with a ‡ in the uncertainties column do not fall within this laboratory's scope of accreditation.

The quality system is registered to ISO 9001:2008.

This calibration is a direct comparison of the unit under test to the listed reference standards and did not involve any sampling plans to complete. No allowance has been made for the instability of the test device due to use, time, etc. Such allowances would be made by the customer as needed.

The uncertainties were computed in accordance with the ISO Guide to the Expression of Uncertainty in Measurement (GUM). A coverage factor of approximately 2 sigma (k=2) has been applied to the standard uncertainty to express the expanded uncertainty at approximately 95% confidence level.

This report may not be reproduced, except in full, unless permission for the publication of an approved abstract is obtained in writing from the organization issuing this report.

Correction data from Larson Davis Model 831 Sound Level Meter Manual, I831.01 Rev O, 2016-09-19

Calibration Check Frequency: 1000 Hz; Reference Sound Pressure Level: 114 dB re 20 µPa; Reference Range: 0 dB gain

Periodic tests were performed in accordance with precedures from IEC 61672-3:2013 / ANSI/ASA S1.4-2014/Part3.

Larson Davis, a division of PCB Piezotronics, Inc 1681 West 820 North Provo, UT 84601, United States 716-684-0001

Certificate Number 2017010367 Customer: Golder Associates Inc 6925 Century Avenue Mississauga, ON L5N 7K2, Canada

Model Number Serial Number Test Results	831 000166 Pass	9	Procedure Number Technician Calibration Date	TechnicianRon HarrisCalibration Date29 Sep 2017					
Initial Condition	AS REC	CEIVED same as shipped	Calibration Due Temperature	29 Se 22.91	p 2019	± 0.25 °C			
Description	Class 1	Davis Model 831 Sound Level Meter are Revision: 2.314	Humidity Static Pressure	52.5 86.59	%RH	± 0.25 °C ± 2.0 %RH ± 0.13 kPa			
Evaluation Metho	od	<i>Tested with:</i> Larson Davis PRM831. S/N 019104 PCB 377B20. S/N 112206 Larson Davis CAL200. S/N 9079 Larson Davis CAL291. S/N 0203	Dat	a report	ed in di	3 re 20 μPa.			
Compliance Stan	dards	Compliant to Manufacturer Specificat Calibration Certificate from procedure IEC 60651:2001 Type 1 IEC 60804:2000 Type 1 IEC 61252:2002 IEC 61260:2001 Class 1 IEC 61672:2013 Class 1		1 :s 1	n combi	ned with			

Issuing lab certifies that the instrument described above meets or exceeds all specifications as stated in the referenced procedure (unless otherwise noted). It has been calibrated using measurement standards traceable to the International System of Units (SI) through the National Institute of Standards and Technology (NIST), or other national measurement institutes, and meets the requirements of ISO/IEC 17025:2005.

Test points marked with a ‡ in the uncertainties column do not fall within this laboratory's scope of accreditation.

The quality system is registered to ISO 9001:2008.

This calibration is a direct comparison of the unit under test to the listed reference standards and did not involve any sampling plans to complete. No allowance has been made for the instability of the test device due to use, time, etc. Such allowances would be made by the customer as needed.

The uncertainties were computed in accordance with the ISO Guide to the Expression of Uncertainty in Measurement (GUM). A coverage factor of approximately 2 sigma (k=2) has been applied to the standard uncertainty to express the expanded uncertainty at approximately 95% confidence level.

This report may not be reproduced, except in full, unless permission for the publication of an approved abstract is obtained in writing from the organization issuing this report.

Correction data from Larson Davis Model 831 Sound Level Meter Manual, I831.01 Rev O, 2016-09-19

For 1/4" microphones, the Larson Davis ADP024 1/4" to 1/2" adaptor is used with the calibrators and the Larson Davis ADP043 1/4" to

Larson Davis, a division of PCB Piezotronics, Inc 1681 West 820 North Provo, UT 84601, United States 716-684-0001

Certificate Number 2017010354 Customer: Golder Associates Inc 6925 Century Avenue Mississauga, ON L5N 7K2, Canada

Model Number Serial Number	377B20 112206	Procedure Number Technician	D0001. Abraha		a
Test Results	Pass	Calibration Date	28 Sep	2017	
Initial Condition	AS RECEIVED some on chipped	Calibration Due 28 Sep 2019			
	AS RECEIVED same as shipped	Temperature	23.4	°C	± 0.01 °C
Description	1/2 inch Microphone - RI - 0V	Humidity	33.3	%RH	± 0.5 %RH
		Static Pressure	101.11	kPa	± 0.03 kPa
Evaluation Metho	d Tested electrically using an electrostatic a	actuator.			

Compliance Standards Compliant to Manufacturer Specifications.

Issuing lab certifies that the instrument described above meets or exceeds all specifications **as** stated in the referenced procedure (unless otherwise noted). It has been calibrated using measurement standards traceable to the SI through the National Institute of Standards and Technology (NIST), or other national measurement institutes, and meets the requirements of ISO/IEC 17025:2005. **Test points marked with a ‡ do not fall within this laboratory's scope of accreditation.**

The quality system is registered to ISO 9001:2008.

This calibration is a direct comparison of the unit under test to the listed reference standards and did not involve any sampling plans to complete. No allowance has been made for the instability of the test device due to use, time, etc. Such allowances would be made by the customer as needed.

The uncertainties were computed in accordance with the ISO Guide to the Expression of Uncertainty in Measurement (GUM). A coverage factor of approximately 2 sigma (k=2) has been applied to the standard uncertainty to express the expanded uncertainty at approximately 95% confidence level.

This report may not be reproduced, except in full, unless permission for the publication of an approved abstract is obtained in writing from the organization issuing this report.

	Standards Used	3	and the second second second second
Description	Cal Date	Cal Due	Cal Standard
Larson Davis Model 2900 Real Time Analyzer	07/17/2017	07/17/2018	001230
Microphone Calibration System	08/30/2017	08/30/2018	001233
1/2" Preamplifier	12/15/2016	12/15/2017	001274
Agilent 34401A DMM	12/06/2016	12/06/2017	001329
Larson Davis CAL250 Acoustic Calibrator	01/04/2017	01/04/2018	003030
1/2" Preamplifier	04/12/2017	04/12/2018	006506
Larson Davis 1/2" Preamplifier 7-pin LEMO	09/12/2017	09/12/2018	006507
1/2 inch Microphone - RI - 200V	10/03/2016	10/03/2017	006511
1/2 inch Microphone - RI - 200V	08/09/2017	08/09/2018	006519
Larson Davis 1/2" Preamplifier 7-pin LEMO	09/12/2017	09/12/2018	006530
Larson Davis 1/2" Preamplifier 7-pin LEMO	08/11/2017	08/11/2018	006531
son Davis, a division of PCB Piezotronics, Inc 11 West 820 North vo, UT 84601, United States -684-0001		ACCREDITED Cert #3622.01	CARSON DAV

Certificate Number 2017010366 Customer: Golder Associates Inc 6925 Century Avenue Mississauga, ON L5N 7K2, Canada

Model Number	PRM831		Procedure Number	D0001	1.8383			
Serial Number	019104		Technician	Ron H	larris			
Test Results	Pass		Calibration Date	29 Se	p 2017			
Initial Condition	019104 Pass AS RECEIVED same as shipped Larson Davis 1/2" Preamplifier for Model 83 Type 1	me as shinned	Calibration Due 29 Sep 2019					
	AO NEOLIVED Sa	ine as silipped	Temperature	23.1	°C	± 0.01 °C		
Description	Larson Davis 1/2"	Preamplifier for Model 831	Humidity	51.6	%RH	± 0.5 %RH		
	Type 1		Static Pressure	86.59	kPa	± 0.03 kPa		
Evaluation Metho								
Compliance Stan	dards Complian	t to Manufacturer Specification	ns					

Issuing lab certifies that the instrument described above meets or exceeds all specifications as stated in the referenced procedure (unless otherwise noted). It has been calibrated using measurement standards traceable to the SI through the National Institute of Standards and Technology (NIST), or other national measurement institutes, and meets the requirements of ISO/IEC 17025:2005. Test points marked with a ‡ in the uncertainties column do not fall within this laboratory's scope of accreditation.

The quality system is registered to ISO 9001:2008.

This calibration is a direct comparison of the unit under test to the listed reference standards and did not involve any sampling plans to complete. No allowance has been made for the instability of the test device due to use, time, etc. Such allowances would be made by the customer as needed.

The uncertainties were computed in accordance with the ISO Guide to the Expression of Uncertainty in Measurement (GUM). A coverage factor of approximately 2 sigma (k=2) has been applied to the standard uncertainty to express the expanded uncertainty at approximately 95% confidence level.

This report may not be reproduced, except in full, unless permission for the publication of an approved abstract is obtained in writing from the organization issuing this report.

	Standards Used	1	
Description	Cal Date	Cal Due	Cal Standard
arson Davis Model 2900 Real Time Analyzer	03/08/2017	03/08/2018	003003
rt Scientific 2626-S Humidity/Temperature Sensor	06/11/2017	06/11/2018	006943
gilent 34401A DMM	06/28/2017	06/28/2018	007165
RS DS360 Ultra Low Distortion Generator	10/14/2016	10/14/2017	007167

Certificate Number 2017009620 Customer: Golder Associates Inc 6925 Century Avenue Mississauga,ON L5N 7K2,Canada

Model Number Serial Number Test Results	831 0001702 Pass		Procedure Number Technician Calibration Date Calibration Due	D0001.8378 Ron Harris 6 Sep 2017			
Initial Condition	AS RE	CEIVED same as shipped	Temperature	23.58	°C	± 0.25 °C	
Description	Larson	Davis Model 831	Humidity	49.4	%RH		
Class 1 Sound Level Meter Firmware Revision: 2.314		Static Pressure	86.59	kPa	± 0.13 kPa		
Evaluation Method		Tested electrically using Larson Davis PF microphone capacitance. Data reported in mV/Pa.					
Compliance Standards		Compliant to Manufacturer Specifications Calibration Certificate from procedure D0	_	ds when combined with			
		IEC 60804:2000 Type 1 // IEC 61252:2002 // IEC 61260:2001 Class 1 //	ANSI S1.4-2014 Class 1 ANSI S1.4 (R2006) Type ANSI S1.11 (R2009) Clas ANSI S1.25 (R2007) ANSI S1.43 (R2007) Type	s 1			

Issuing lab certifies that the instrument described above meets or exceeds all specifications as stated in the referenced procedure (unless otherwise noted). It has been calibrated using measurement standards traceable to the International System of Units (SI) through the National Institute of Standards and Technology (NIST), or other national measurement institutes, and meets the requirements of ISO/IEC 17025:2005. Test points marked with a ‡ in the uncertainties column do not fall within this laboratory's scope of accreditation.

The quality system is registered to ISO 9001:2008.

This calibration is a direct comparison of the unit under test to the listed reference standards and did not involve any sampling plans to complete. No allowance has been made for the instability of the test device due to use, time, etc. Such allowances would be made by the customer as needed.

The uncertainties were computed in accordance with the ISO Guide to the Expression of Uncertainty in Measurement (GUM). A coverage factor of approximately 2 sigma (k=2) has been applied to the standard uncertainty to express the expanded uncertainty at approximately 95% confidence level.

This report may not be reproduced, except in full, unless permission for the publication of an approved abstract is obtained in writing from the organization issuing this report.

Correction data from Larson Davis Model 831 Sound Level Meter Manual, I831.01 Rev O, 2016-09-19

Calibration Check Frequency: 1000 Hz; Reference Sound Pressure Level: 114 dB re 20 µPa; Reference Range: 0 dB gain

Periodic tests were performed in accordance with precedures from IEC 61672-3:2013 / ANSI/ASA S1.4-2014/Part3.

Larson Davis,a division of PCB Piezotronics,Inc 1681 West 820 North Provo,UT 84601,United States 716-684-0001

2017-9-7T08:07:34

Certificate Number 2017009656 Customer: Golder Associates Inc 6925 Century Avenue Mississauga,ON L5N 7K2,Canada

Model Number Serial Number Test Results Initial Condition	I Number 0001702 Results Pass		Procedure Number Technician Calibration Date Calibration Due	TechnicianRon HarrisCalibration Date6 Sep 2017Calibration DueCalibration Due					
Description	Class 1	Davis Model 831 Sound Level Meter are Revision: 2.314	Humidity Static Pressure	23.5 49 86.45	%RH	± 0.25 °C ± 2.0 %RH ± 0.13 kPa			
Evaluation Metho	ođ	<i>Tested with:</i> Larson Davis PRM831. S/N 019106 PCB 377B20. S/N 115034 Larson Davis CAL200. S/N 9079 Larson Davis CAL291. S/N 0203	Dat	a report	ed in di	B re 20 μPa.			
Compliance Stan	dards	Compliant to Manufacturer Specification Calibration Certificate from procedure IEC 60651:2001 Type 1 IEC 60804:2000 Type 1 IEC 61252:2002 IEC 61260:2001 Class 1 IEC 61672:2013 Class 1		1 ss 1	n combi	ined with			

Issuing lab certifies that the instrument described above meets or exceeds all specifications as stated in the referenced procedure (unless otherwise noted). It has been calibrated using measurement standards traceable to the International System of Units (SI) through the National Institute of Standards and Technology (NIST), or other national measurement institutes, and meets the requirements of ISO/IEC 17025:2005.

Test points marked with a ‡ in the uncertainties column do not fall within this laboratory's scope of accreditation.

The quality system is registered to ISO 9001:2008.

This calibration is a direct comparison of the unit under test to the listed reference standards and did not involve any sampling plans to complete. No allowance has been made for the instability of the test device due to use, time, etc. Such allowances would be made by the customer as needed.

The uncertainties were computed in accordance with the ISO Guide to the Expression of Uncertainty in Measurement (GUM). A coverage factor of approximately 2 sigma (k=2) has been applied to the standard uncertainty to express the expanded uncertainty at approximately 95% confidence level.

This report may not be reproduced, except in full, unless permission for the publication of an approved abstract is obtained in writing from the organization issuing this report.

Correction data from Larson Davis Model 831 Sound Level Meter Manual, I831.01 Rev O, 2016-09-19

For 1/4" microphones, the Larson Davis ADP024 1/4" to 1/2" adaptor is used with the calibrators and the Larson Davis ADP043 1/4" to

Larson Davis, a division of PCB Piezotronics, Inc 1681 West 820 North Provo, UT 84601, United States 716-684-0001

2017-9-7T08:07:03

Certificate Number 2017009618 **Customer: Golder Associates Inc 6925 Century Avenue** Mississauga, ON L5N 7K2, Canada

Model Number Serial Number	PRM83 019106		Procedure Number Technician	Ron H				
Test Results	Pass		Calibration Date	6 Sep	6 Sep 2017			
Initial Condition AS RE		CEIVED same as shipped	Calibration Due			- ••• /••		
			Temperature	23,55	°C	± 0.01 °C		
Description			Humidity	50.9	%RH	± 0.5 %RH		
	Type 1		Static Pressure	86.58	kPa	± 0.5 %RH ± 0.03 kPa		
		Tested electrically using a 12.0 pF cap Data reported in dB re 20 µPa assumir						
Compliance Stan	dards	Compliant to Manufacturer Specificatio	ns					

Issuing lab certifies that the instrument described above meets or exceeds all specifications as stated in the referenced procedure (unless otherwise noted). It has been calibrated using measurement standards traceable to the SI through the National Institute of Standards and Technology (NIST), or other national measurement institutes, and meets the requirements of ISO/IEC 17025:2005. Test points marked with a ‡ in the uncertainties column do not fall within this laboratory's scope of accreditation.

The quality system is registered to ISO 9001:2008.

This calibration is a direct comparison of the unit under test to the listed reference standards and did not involve any sampling plans to complete. No allowance has been made for the instability of the test device due to use, time, etc. Such allowances would be made by the customer as needed.

The uncertainties were computed in accordance with the ISO Guide to the Expression of Uncertainty in Measurement (GUM). A coverage factor of approximately 2 sigma (k=2) has been applied to the standard uncertainty to express the expanded uncertainty at approximately 95% confidence level.

This report may not be reproduced, except in full, unless permission for the publication of an approved abstract is obtained in writing from the organization issuing this report.

	Standards Used	1	
Description	Cal Date	Cal Due	Cal Standard
rson Davis Model 2900 Real Time Analyzer	03/08/2017	03/08/2018	003003
rt Scientific 2626-S Humidity/Temperature Sensor	06/11/2017	06/11/2018	006943
ilent 34401A DMM	06/28/2017	06/28/2018	007165
S DS360 Ultra Low Distortion Generator	10/14/2016	10/14/2017	007167

	SiteVisit 1	SiteVisit 2	SiteVisit 3	SiteVisit 4	SiteVisit 5	SiteVisit 6	SiteVisit 7	SiteVisit 8	SiteVisit 9
Date	23-May-18	12-Jun-18	13-Jun-18	14-Jun-18	15-Jun-18	20-Jun-18	21-Jun-18	22-Jun-18	26-Jun-18
Maximum Temperature (°C)	19.1	27.4	25	26.6	24.4	23.7	23	23.3	26.3
Minimum Temperature (°C)	8.9	11.8	15.6	11.3	9.6	14.1	12.3	10.8	8.7
Mean Temperature (°C)	14	19.6	20.3	18.9	17	18.9	17.6	17.1	17.5
Percipitation (mm)	0	0	2.4	0	0	0	0	1.8	0
Winds (km/hr)	25.7	17.7	38.6	37	17.7	9.6	27	17.7	17.7
Speed of Maximum Gust (km/hr)	28	28	54	54	19	11	28	19	27

APPENDIX C

Road Noise Prediction Modelling Verification

RLS-90 road predictions were verified using the ORNAMENT prediction model at two prediction locations. The prediction locations were within 500 m of Stanley Road S and Ramsey Road and therefore partial noise levels due to these roads were considered. The RLS-90 calculation protocol from the Cadna-A model and the ORNAMENT calculation are presented in the following pages. Table 1 presents a summary of the results.

	C	RNAMEN	т		RLS-90		l	Difference)
Prediction Location	Leq (dBA) Stanley Avenue S	Leq (dBA) Ramsey Road	Leq Total (dBA)	Leq (dBA) Stanley Avenue S	Leq (dBA) Ramsey Road	Leq Total (dBA)	Change in Leq (dB) Stanley Avenue S	Change in Leq (dB) Ramsey Road	Change in Leq (dB) Leq Total (dB)
Noise_Offsite02	40	48	49	41	47	48	-1	1	1
Noise_Offsite03	-	47	47	32	46	46	-	1	1

Table 1: Summary of RLS-90 and ORNAMENT Noise Modelling Results

Note: "-" indicates a road/receiver distance of greater than 500 m

Barrier Receiver Distance (m)	Source Elevation (m)	Receiver Gnd Elevation (m)	Barrier Base Elevation (m)	# Vehicles	Leq (dBA)	Pre	Main	Post	%Cars	%MT	%нт
0.00	180.00	180.00	0.00	231	39.5	0.00	39.52	0.00	94.2%	1.7%	4.1%
0.00	180.00	180.00	0.00	26	48.2	0.00	48.18	0.00	87.0%	4.3%	8.7%
0.00	180.00	180.00	0.00	26	47.4	0.00	47.40	0.00	87.0%	4.3%	8.7%

Receiver

e: Noise_Offsite02 Noise_Offsite02 655741.00 Name:

ID:

X:

Y: 4769267.00

Z: 181.50

	Road	, RLS-90, Nar	ne: "Star	nley A	ve S_	Ramse	y Rd_	Progr	ess St	", ID: '	'!02!20	018_S	09"		
Nr.	Х	Y	Z	Refl.	DEN	LmE	DI	Dstg	Drefl	Κ	Ds	Dbm	Dz	RL	Lr
	(m)	(m)	(m)			dB(A)	dB	dB	dB	dB	(dB)	(dB)	(dB)	(dB)	dB(A)
50	656050.73	4769180.50	180.50	0	D	54.6	21.7	0.0	0.0	0.0	-40.6	-4.7	0.0	0.0	31.1
51	656060.62	4769031.96	180.50	0	D	54.6	21.7	0.0	0.0	0.0	-42.8	-4.7	0.0	0.0	28.9
53	656070.51	4768883.41	180.50	0	D	54.6	21.7	0.0	0.0	0.0	-45.4	-4.7	0.0	0.0	26.2
55	656080.39	4768734.87	180.50	0	D	54.6	21.7	0.0	0.0	0.0	-48.0	-4.7	0.0	0.0	23.6
57	656046.99	4769180.25	180.50	0	D	54.6	21.7	0.0	0.0	0.0	-40.4	-4.7	0.0	0.0	31.2
58	656056.88	4769031.71	180.50	0	D	54.6	21.7	0.0	0.0	0.0	-42.7	-4.7	0.0	0.0	28.9
60	656066.76	4768883.16	180.50	0	D	54.6	21.7	0.0	0.0	0.0	-45.4	-4.7	0.0	0.0	26.2
62	656076.65	4768734.62	180.50	0	D	54.6	21.7	0.0	0.0	0.0	-47.9	-4.7	0.0	0.0	23.7

		Road	I, RLS-9	0, Nar	me: "F	Ramsey	/ Rd",	ID: "!0	2!201	8_S13	8"				
Nr.	Х	Y	Z		DEN		DI	Dstg	Drefl	ĸ	Ds	Dbm	Dz	RL	Lr
	(m)	(m)	(m)			dB(A)	dB	dB	dB	dB	(dB)	(dB)	(dB)	(dB)	dB(A)
1	656013.15	4769251.08	180.50	0	D	46.5	17.9	0.0	0.0	0.0	-38.9	-4.7	0.0	0.0	20.8
2	655951.42	4769247.68	180.50	0	D	46.5	17.9	0.0	0.0	0.0	-36.4	-4.6	0.0	0.0	23.4
3	655889.69	4769244.28	180.50	0	D	46.5	17.9	0.0	0.0	0.0	-33.1	-4.5	0.0	0.0	26.7
4	655843.39	4769241.73	180.50	0	D	46.5	14.9	0.0	0.0	0.0	-29.8	-4.4	0.0	0.0	27.2
5	655812.52	4769240.03	180.50	0	D	46.5	14.9	0.0	0.0	0.0	-26.8	-4.3	0.0	0.0	30.3
6	655789.37	4769238.75	180.50	0	D	46.5	11.9	0.0	0.0	0.0	-24.0	-4.0	0.0	0.0	30.3
7	655773.94	4769237.90	180.50	0	D	46.5	11.9	0.0	0.0	0.0	-21.9	-3.7	0.0	0.0	32.8
8	655758.50	4769237.05	180.50	0	D	46.5	11.9	0.0	0.0	0.0	-19.8	-3.3	0.0	0.0	35.3
9	655746.93	4769236.42	180.50	0	D	46.5	8.9	0.0	0.0	0.0	-18.8	-3.1	0.0	0.0	33.4
10	655739.21	4769235.99	180.50	0	D	46.5	8.9	0.0	0.0	0.0	-18.8	-3.1	0.0	0.0	33.5
11	655727.64	4769235.35	180.50	0	D	46.5	11.9	0.0	0.0	0.0	-19.7	-3.3	0.0	0.0	35.4
12	655712.20	4769234.51	180.50	0	D	46.5	11.9	0.0	0.0	0.0	-21.8	-3.7	0.0	0.0	32.9
13	655689.05	4769233.23	180.50	0	D	46.5	14.9	0.0	0.0	0.0	-25.0	-4.1	0.0	0.0	32.3
14	655658.19	4769231.53	180.50	0	D	46.5	14.9	0.0	0.0	0.0	-28.3	-4.3	0.0	0.0	28.7
16	655627.32	4769229.83	180.50	0	D	46.5	14.9	0.0	0.0	0.0	-31.0	-4.5	0.0	0.0	25.9
18	655581.02	4769227.28	180.50	0	D	46.5	17.9	0.0	0.0	0.0	-34.0	-4.6	0.0	0.0	25.8
20	656012.94	4769254.82	180.50	0	D	46.5	17.9	0.0	0.0	0.0	-38.9	-4.7	0.0	0.0	20.9
22	655951.21	4769251.42	180.50	0	D	46.5	17.9	0.0	0.0	0.0	-36.3	-4.6	0.0	0.0	23.4
24	655889.48	4769248.02	180.50	0	D	46.5	17.9	0.0	0.0	0.0	-33.1	-4.5	0.0	0.0	26.8
26	655843.18	4769245.47	180.50	0	D	46.5	14.9	0.0	0.0	0.0	-29.7	-4.4	0.0	0.0	27.3
28	655812.31	4769243.77	180.50	0	D	46.5	14.9	0.0	0.0	0.0	-26.7	-4.2	0.0	0.0	30.5
30	655789.16	4769242.50	180.50	0	D	46.5	11.9	0.0	0.0	0.0	-23.7	-4.0	0.0	0.0	30.7
32	655773.73	4769241.65	180.50	0	D	46.5	11.9	0.0	0.0	0.0	-21.3	-3.6	0.0	0.0	33.4
34	655758.30	4769240.80	180.50	0	D	46.5	11.9	0.0	0.0	0.0	-18.9	-3.1	0.0	0.0	36.4
36	655746.72	4769240.16	180.50	0	D	46.5	8.9	0.0	0.0	0.0	-17.7	-2.8	0.0	0.0	34.9
39	655739.01	4769239.74	180.50	0	D	46.5	8.9	0.0	0.0	0.0	-17.7	-2.8	0.0	0.0	34.9
41	655727.43	4769239.10	180.50	0	D	46.5	11.9	0.0	0.0	0.0	-18.8	-3.1	0.0	0.0	36.5
42	655712.00	4769238.25	180.50	0	D	46.5	11.9	0.0	0.0	0.0	-21.2	-3.6	0.0	0.0	33.5
43	655696.57	4769237.40	180.50	0	D	46.5	11.9	0.0	0.0	0.0	-23.6	-4.0	0.0	0.0	30.8
44	655681.13	4769236.55	180.50	0	D	46.5	11.9	0.0	0.0	0.0	-25.7	-4.2	0.0	0.0	28.5
46	655657.98	4769235.28	180.50	0	D	46.5	14.9	0.0	0.0	0.0	-28.2	-4.3	0.0	0.0	28.8
47	655627.12	4769233.58	180.50	0	D	46.5	14.9	0.0	0.0	0.0	-30.9	-4.5	0.0	0.0	26.0
48	655580.82	4769231.03	180.50	0	D	46.5	17.9	0.0	0.0	0.0	-33.9	-4.6	0.0	0.0	25.9
80	655510.21	4769223.38	179.91	0	D	46.5	16.4	0.0	0.0	0.0	-37.4	-4.7	0.0	0.0	20.8
82	655510.01	4769227.13	179.91	0	D	46.5	16.4	0.0	0.0	0.0	-37.4	-4.7	0.0	0.0	20.9
103	655541.17	4769225.09	180.23	0	D	46.5	12.6	0.0	0.0	0.0	-36.0	-4.6	0.0	0.0	18.4
104	655540.96	4769228.83	180.23	0	D	46.5	12.6	0.0	0.0	0.0	-36.0	-4.6	0.0	0.0	18.4
119	655448.60	4769219.95	179.89	0	D	46.5	13.7	0.0	0.0	0.0	-39.7	-4.7	0.0	0.0	15.8
120	655447.99	4769223.65	179.89	0	D	46.5	13.7	0.0	0.0	0.0	-39.7	-4.7	0.0	0.0	15.8
123	655467.75	4769221.93	179.72	0	D	46.5	11.9	0.0	0.0	0.0	-39.0	-4.7	0.0	0.0	14.7

		Road	l, RLS-9	0, Nai	ne: "F	Ramsey	' Rd",	ID: "!0	2!201	8_S13	3"				
Nr.	Х	Y	Z	Refl.	DEN	LmE	DI	Dstg	Drefl	К	Ds	Dbm	Dz	RL	Lr
	(m)	(m)	(m)			dB(A)	dB	dB	dB	dB	(dB)	(dB)	(dB)	(dB)	dB(A)
124	655467.71	4769225.68	179.72	0	D	46.5	11.9	0.0	0.0	0.0	-39.0	-4.7	0.0	0.0	14.7
125	655402.85	4769214.18	180.27	0	D	46.5	13.5	0.0	0.0	0.0	-41.2	-4.7	0.0	0.0	14.1
126	655402.24	4769217.88	180.27	0	D	46.5	13.5	0.0	0.0	0.0	-41.2	-4.7	0.0	0.0	14.1
127	655310.26	4769204.77	180.50	0	D	46.5	15.5	0.0	0.0	0.0	-43.8	-4.7	0.0	0.0	13.5
128	655310.03	4769208.51	180.50	0	D	46.5	15.5	0.0	0.0	0.0	-43.7	-4.7	0.0	0.0	13.5
129	655481.86	4769222.10	179.76	0	D	46.5	11.0	0.0	0.0	0.0	-38.5	-4.7	0.0	0.0	14.3
130	655481.82	4769225.85	179.76	0	D	46.5	11.0	0.0	0.0	0.0	-38.5	-4.7	0.0	0.0	14.3
133	655381.57	4769210.80	180.50	0	D	46.5	13.1	0.0	0.0	0.0	-41.8	-4.7	0.0	0.0	13.1
134	655381.00	4769214.51	180.50	0	D	46.5	13.1	0.0	0.0	0.0	-41.8	-4.7	0.0	0.0	13.1
135	655421.88	4769216.69	180.09	0	D	46.5	12.1	0.0	0.0	0.0	-40.6	-4.7	0.0	0.0	13.3
136	655421.55	4769220.42	180.09	0	D	46.5	12.1	0.0	0.0	0.0	-40.6	-4.7	0.0	0.0	13.3
139	655339.70	4769206.85	180.50	0	D	46.5	13.7	0.0	0.0	0.0	-43.0	-4.7	0.0	0.0	12.5
140	655339.38	4769210.59	180.50	0	D	46.5	13.7	0.0	0.0	0.0	-43.0	-4.7	0.0	0.0	12.5
141	655361.29	4769208.54	180.50	0	D	46.5	13.0	0.0	0.0	0.0	-42.4	-4.7	0.0	0.0	12.4
142	655361.03	4769212.28	180.50	0	D	46.5	13.0	0.0	0.0	0.0	-42.4	-4.7	0.0	0.0	12.4
147	655281.99	4769201.16	180.50	0	D	46.5	13.5	0.0	0.0	0.0	-44.4	-4.7	0.0	0.0	10.8
148	655281.12	4769204.80	180.50	0	D	46.5	13.5	0.0	0.0	0.0	-44.5	-4.7	0.0	0.0	10.8
149	655261.56	4769195.66	180.50	0	D	46.5	13.1	0.0	0.0	0.0	-44.9	-4.7	0.0	0.0	9.9
150	655260.47	4769199.25	180.50	0	D	46.5	13.1	0.0	0.0	0.0	-44.9	-4.7	0.0	0.0	9.9
153	655242.96	4769190.13	180.50	0	D	46.5	12.7	0.0	0.0	0.0	-45.4	-4.7	0.0	0.0	9.1
154	655241.91	4769193.73	180.50	0	D	46.5	12.7	0.0	0.0	0.0	-45.4	-4.7	0.0	0.0	9.1
155	655433.41	4769217.71	180.07	0	D	46.5	8.4	0.0	0.0	0.0	-40.2	-4.7	0.0	0.0	9.9
156	655433.08	4769221.44	180.07	0	D	46.5	8.4	0.0	0.0	0.0	-40.2	-4.7	0.0	0.0	10.0

	Road, RL	S-90, Name:	"Stanley	Ave	S_Ma	rinelan	d Pkw	ay_Ra	amsey	Rd",	ID: "!0	2!201	8_S08	8"	
Nr.	Х	Y	Z	Refl.	DEN	LmE	DI	Dstg	Drefl	Κ	Ds	Dbm	Dz	RL	Lr
	(m)	(m)	(m)			dB(A)	dB	dB	dB	dB	(dB)	(dB)	(dB)	(dB)	dB(A)
64	656043.00	4769462.40	180.50	0	D	55.3	19.7	0.0	0.0	0.0	-41.7	-4.7	0.0	0.0	28.6
65	656039.25	4769462.34	180.50	0	D	55.3	19.7	0.0	0.0	0.0	-41.6	-4.7	0.0	0.0	28.7
66	656041.05	4769607.65	182.50	0	D	55.3	20.6	0.0	0.0	0.0	-44.2	-4.7	0.0	0.0	27.0
67	656037.30	4769607.60	182.50	0	D	55.3	20.6	0.0	0.0	0.0	-44.1	-4.7	0.0	0.0	27.0
68	656045.41	4769283.27	180.50	0	D	55.3	17.6	0.0	0.0	0.0	-40.0	-4.7	0.0	0.0	28.2
69	656041.66	4769283.22	180.50	0	D	55.3	17.6	0.0	0.0	0.0	-39.9	-4.7	0.0	0.0	28.3
70	656044.57	4769345.92	181.35	0	D	55.3	17.2	0.0	0.0	0.0	-40.3	-4.6	0.0	0.0	27.6
71	656040.82	4769345.87	181.35	0	D	55.3	17.2	0.0	0.0	0.0	-40.2	-4.6	0.0	0.0	27.7
72	656038.18	4769824.70	182.50	0	D	55.3	22.1	0.0	0.0	0.0	-48.0	0.0	4.8	0.0	24.7
73	656034.43	4769824.65	182.50	0	D	55.3	22.1	0.0	0.0	0.0	-47.9	0.0	4.8	0.0	24.7
74	656042.01	4769535.40	181.60	0	D	55.3	14.2	0.0	0.0	0.0	-42.9	-4.7	0.0	0.0	21.9
76	656038.26	4769535.34	181.60	0	D	55.3	14.2	0.0	0.0	0.0	-42.9	-4.7	0.0	0.0	22.0
78	656044.11	4769379.68	181.59	0	D	55.3	11.8	0.0	0.0	0.0	-40.6	-4.6	0.0	0.0	21.8
79	656040.36	4769379.63	181.59	0	D	55.3	11.8	0.0	0.0	0.0	-40.5	-4.6	0.0	0.0	22.0
83	656039.47	4769727.42	181.72	0	D	55.3	15.2	0.0	0.0	0.0	-46.3	0.0	4.8	0.0	19.4
85	656035.72	4769727.37	181.72	0	D	55.3	15.2	0.0	0.0	0.0	-46.3	0.0	4.8	0.0	19.5
86	656043.94	4769392.40	181.42	0	D	55.3	10.2	0.0	0.0	0.0	-40.8	-4.6	0.0	0.0	20.1
87	656040.19	4769392.34	181.42	0	D	55.3	10.2	0.0	0.0	0.0	-40.6	-4.6	0.0	0.0	20.2
89	656043.69	4769410.60	180.87	0	D	55.3	10.1	0.0	0.0	0.0	-41.0	-4.7	0.0	0.0	19.8
90	656039.94	4769410.55	180.87	0	D	55.3	10.1	0.0	0.0	0.0	-40.9	-4.7	0.0	0.0	19.9
91	656042.28	4769515.63	180.60	0	D	55.3	11.2	0.0	0.0	0.0	-42.6	0.0	4.8	0.0	19.1
92	656038.53	4769515.58	180.60	0	D	55.3	11.2	0.0	0.0	0.0	-42.5	0.0	4.8	0.0	19.2
93	656044.97	4769315.73	180.80	0	D	55.3	9.0	0.0	0.0	0.0	-40.1	-4.7	0.0	0.0	19.5
94	656041.22	4769315.68	180.80	0	D	55.3	9.0	0.0	0.0	0.0	-40.0	-4.7	0.0	0.0	19.7
95	656043.82	4769401.55	181.24	0	D	55.3	9.0	0.0	0.0	0.0	-40.9	-4.7	0.0	0.0	18.8
96	656040.07	4769401.50	181.24	0	D	55.3	9.0	0.0	0.0	0.0	-40.8	-4.7	0.0	0.0	18.9
97	656037.66	4769923.58	182.50	0	D	55.3	15.6	0.0	0.0	0.0	-49.6	0.0	4.8	0.0	16.6
98	656033.91	4769923.69	182.50	0	D	55.3	15.6	0.0	0.0	0.0	-49.5	0.0	4.8	0.0	16.6
99	656040.18	4769673.71	181.74	0	D	55.3	12.4	0.0	0.0	0.0	-45.4	0.0	4.8	0.0	17.6
100	656036.43	4769673.66	181.74	0	D	55.3	12.4	0.0	0.0	0.0	-45.3	0.0	4.8	0.0	17.6
101	656039.80	4769701.95	180.91	0	D	55.3	12.5	0.0	0.0	0.0	-45.9	0.0	4.8	0.0	17.2
102	656036.06	4769701.90	180.91	0	D	55.3	12.5	0.0	0.0	0.0	-45.8	0.0	4.8	0.0	17.3
105	656138.99	4770075.70	182.50	0	D	55.3	16.9	0.0	0.0	0.0	-52.4	0.0	4.8	0.0	15.0
106	656136.62	4770078.60	182.50	0	D	55.3	16.9	0.0	0.0	0.0	-52.4	0.0	4.8	0.0	15.0
107	656081.71	4770026.47	182.50	0	D	55.3	15.5	0.0	0.0	0.0	-51.4	0.0	4.8	0.0	14.7
108	656079.04	4770029.11	182.50	0	D	55.3	15.5	0.0	0.0	0.0	-51.4	0.0	4.8	0.0	14.7

	Road, RL	S-90, Name:	"Stanley	/ Ave	S_Ma	rinelan	d Pkw	ay_Ra	amsey	Rd", I	D: "!0	2!2018	8_S08		
Nr.	Х	Y	Z	Refl.	DEN	LmE	DI	Dstg	Drefl	Κ	Ds	Dbm	Dz	RL	Lr
	(m)	(m)	(m)			dB(A)	dB	dB	dB	dB	(dB)	(dB)	(dB)	(dB)	dB(A)
109	656050.50	4769982.51	182.50	0	D	55.3	14.9	0.0	0.0	0.0	-50.5	0.0	4.8	0.0	14.9
110	656047.11	4769984.10	182.50	0	D	55.3	14.9	0.0	0.0	0.0	-50.5	0.0	4.8	0.0	14.9
111	656041.14	4769955.24	182.50	0	D	55.3	14.5	0.0	0.0	0.0	-50.1	0.0	4.8	0.0	15.0
112	656037.48	4769956.03	182.50	0	D	55.3	14.5	0.0	0.0	0.0	-50.1	0.0	4.8	0.0	15.0
113	656107.07	4770049.66	182.50	0	D	55.3	15.2	0.0	0.0	0.0	-51.9	0.0	4.8	0.0	13.9
114	656104.70	4770052.57	182.50	0	D	55.3	15.2	0.0	0.0	0.0	-51.9	0.0	4.8	0.0	13.9
115	656173.15	4770103.07	182.89	0	D	55.3	15.9	0.0	0.0	0.0	-53.0	0.0	4.8	0.0	13.4
116	656170.83	4770106.02	182.89	0	D	55.3	15.9	0.0	0.0	0.0	-53.0	0.0	4.8	0.0	13.4
117	656039.99	4769687.70	180.93	0	D	55.3	10.2	0.0	0.0	0.0	-45.6	0.0	4.8	0.0	15.1
118	656036.24	4769687.65	180.93	0	D	55.3	10.2	0.0	0.0	0.0	-45.6	0.0	4.8	0.0	15.2
121	656063.10	4770005.02	182.50	0	D	55.3	13.4	0.0	0.0	0.0	-50.9	0.0	4.8	0.0	13.0
122	656060.02	4770007.16	182.50	0	D	55.3	13.4	0.0	0.0	0.0	-51.0	0.0	4.8	0.0	13.0
131	656211.03	4770151.05	184.02	0	D	55.3	13.4	0.0	0.0	0.0	-53.8	0.0	4.8	0.0	10.2
132	656207.46	4770152.21	184.02	0	D	55.3	13.4	0.0	0.0	0.0	-53.8	0.0	4.8	0.0	10.2
137	656217.15	4770171.69	184.33	0	D	55.3	13.2	0.0	0.0	0.0	-54.1	-4.8	0.0	0.0	9.7
138	656213.52	4770172.65	184.33	0	D	55.3	13.2	0.0	0.0	0.0	-54.1	-4.8	0.0	0.0	9.7
143	656193.73	4770121.11	183.45	0	D	55.3	11.9	0.0	0.0	0.0	-53.3	0.0	4.8	0.0	9.1
144	656190.91	4770123.58	183.45	0	D	55.3	11.9	0.0	0.0	0.0	-53.4	0.0	4.8	0.0	9.1
145	656203.22	4770133.67	183.74	0	D	55.3	11.9	0.0	0.0	0.0	-53.6	0.0	4.8	0.0	8.9
146	656200.07	4770135.71	183.74	0	D	55.3	11.9	0.0	0.0	0.0	-53.6	0.0	4.8	0.0	8.9
151	656041.82		182.50	0	D	55.3	2.3	0.0	0.0	0.0	-43.2	-4.7	0.0	0.0	9.8
152	656038.07	4769549.42	182.50	0	D	55.3	2.3	0.0	0.0	0.0	-43.1	-4.7	0.0	0.0	9.9
157	656219.99	4770184.37	184.50	0	D	55.3	1.5	0.0	0.0	0.0	-54.3	-4.8	0.0	0.0	-2.2
158	656216.24	4770184.26	184.50	0	D	55.3	1.5	0.0	0.0	0.0	-54.2	-4.8	0.0	0.0	-2.2
159	656219.94	4770182.74	184.50	0	D	55.3	1.3	0.0	0.0	0.0	-54.3	-4.8	0.0	0.0	-2.4
160	656216.21	4770183.12	184.50	0	D	55.3	1.3	0.0	0.0	0.0	-54.2	-4.8	0.0	0.0	-2.3

Receiver

ne: Noise_Offsite03 Noise_Offsite03 655223.00 Name:

ID:

X: Y:

4769206.00

Z: 181.50

	Road	, RLS-90, Nar	ne: "Stai	nley A	ve S_	Ramse	y Rd_	Progr	ess St	", ID: '	'!02!20	018_S	09"		
Nr.	Х	Y	Z	Refl.	DEN	LmE	DI	Dstg	Drefl	Κ	Ds	Dbm	Dz	RL	Lr
	(m)	(m)	(m)			dB(A)	dB	dB	dB	dB	(dB)	(dB)	(dB)	(dB)	dB(A)
38	656055.67	4769106.23	180.50	0	D	54.6	24.7	0.0	0.0	0.0	-51.5	-4.8	0.0	0.0	23.1
40	656075.45	4768809.14	180.50	0	D	54.6	24.7	0.0	0.0	0.0	-53.0	-4.8	0.0	0.0	21.6
45	656051.93	4769105.98	180.50	0	D	54.6	24.7	0.0	0.0	0.0	-51.4	-4.8	0.0	0.0	23.2
49	656071.71	4768808.89	180.50	0	D	54.6	24.7	0.0	0.0	0.0	-52.9	-4.8	0.0	0.0	21.6

		Road	I, RLS-9	0, Nar	ne: "F	Ramsey	' Rd",	ID: "!0	2!201	8 S13	8"				
Nr.	Х	Y	Z	· ·		LmE	DI	Dstg	Drefl	K	Ds	Dbm	Dz	RL	Lr
	(m)	(m)	(m)			dB(A)	dB	dB	dB	dB	(dB)	(dB)	(dB)	(dB)	dB(A)
15	655247.41	4769191.43	180.50	0	D	46.5	9.7	0.0	0.0	0.0	-18.0	-2.9	0.0	0.0	35.3
17	655238.51	4769188.83	180.50	0	D	46.5	9.7	0.0	0.0	0.0	-16.2	-2.2	0.0	0.0	37.7
19	655246.36	4769195.03		0	D	46.5	9.7	0.0	0.0		-17.2	-2.6	0.0	0.0	36.4
21	655237.46	4769192.43	180.50	0	D	46.5	9.7	0.0	0.0		-14.9	-1.6	0.0	0.0	39.7
23	655266.40	4769197.13		0	D	46.5	10.0	0.0	0.0	0.0	-22.0	-3.7	0.0	0.0	30.8
25	655256.72	4769194.20	180.50	0	D	46.5	10.0	0.0	0.0	0.0	-20.0	-3.4	0.0	0.0	33.1
27	655265.31	4769200.72	180.50	0	D	46.5	10.0	0.0	0.0	0.0	-21.6	-3.7	0.0	0.0	31.2
29	655255.63	4769197.78	180.50	0	D	46.5	10.0	0.0	0.0	0.0	-19.5	-3.3	0.0	0.0	33.8
31	655281.99	4769201.16	180.50	0	D	46.5	13.5	0.0	0.0	0.0	-24.5	-4.1	0.0	0.0	31.4
33	655281.12	4769204.80	180.50	0	D	46.5	13.5	0.0	0.0	0.0	-24.4	-4.0	0.0	0.0	31.5
35		4769204.77	180.50	0	D	46.5	15.5	0.0	0.0		-28.1	-4.3	0.0	0.0	29.6
37	655310.03	4769208.51	180.50	0	D	46.5	15.5	0.0	0.0	0.0	-28.0	-4.3	0.0	0.0	29.6
52	655920.55	4769245.98	180.50	0	D	46.5	23.9	0.0	0.0	0.0	-49.2	-4.7	0.0	0.0	16.5
54		4769235.78	180.50	0	D	46.5	20.9	0.0	0.0	0.0	-45.6	-4.7	0.0	0.0	17.1
56	655611.89	4769228.98		0	D	46.5	20.9	0.0	0.0		-42.6	-4.7	0.0	0.0	20.1
59	655920.35	4769249.72	180.50	0	D	46.5	23.9	0.0	0.0	0.0	-49.2	-4.7	0.0	0.0	16.5
61		4769239.52	180.50	0	D	46.5	20.9	0.0	0.0	0.0	-45.6	-4.7	0.0	0.0	17.1
63	655611.68	4769232.73	180.50	0	D	46.5	20.9	0.0	0.0	0.0	-42.6	-4.7	0.0	0.0	20.1
75		4769206.85	180.50	0	D	46.5	13.7	0.0	0.0	0.0	-30.7	-4.5	0.0	0.0	25.0
77		4769210.59	180.50	0	D	46.5	13.7	0.0	0.0	0.0	-30.7	-4.5	0.0	0.0	25.0
88	655361.29	4769208.54	180.50	0	D	46.5	13.0	0.0	0.0	0.0	-32.3	-4.5	0.0	0.0	22.6
161	655361.03	4769212.28	180.50	0	D	46.5	13.0	0.0	0.0	0.0	-32.3	-4.5	0.0	0.0	22.6
166	655381.57	4769210.80	180.50	0	D	46.5	13.1	0.0	0.0	0.0	-33.6	-4.6	0.0	0.0	21.5
167	655381.00	4769214.51	180.50	0	D	46.5	13.1	0.0	0.0	0.0	-33.6	-4.6	0.0	0.0	21.5
168	655402.85	4769214.18	180.27	0	D	46.5	13.5	0.0	0.0	0.0	-34.8	-4.6	0.0	0.0	20.6
169	655402.24	4769217.88	180.27	0	D	46.5	13.5	0.0	0.0	0.0	-34.8	-4.6	0.0	0.0	20.6
172	655510.21	4769223.38	179.91	0	D	46.5	16.4	0.0	0.0	0.0	-39.4	-4.7	0.0	0.0	18.8
173	655510.01	4769227.13	179.91	0	D	46.5	16.4	0.0	0.0	0.0	-39.4	-4.7	0.0	0.0	18.8
176	655448.60	4769219.95	179.89	0	D	46.5	13.7	0.0	0.0	0.0	-37.0	-4.7	0.0	0.0	18.5
177	655447.99	4769223.65	179.89	0	D	46.5	13.7	0.0	0.0	0.0	-37.0	-4.7	0.0	0.0	18.5
178		4769216.69		0	D	46.5	12.1	0.0	0.0	0.0	-35.8	-4.6	0.0	0.0	18.2
179		4769220.42	180.09	0	D	46.5	12.1	0.0	0.0		-35.8	-4.6	0.0	0.0	18.2
180		4769221.93		0	D	46.5	11.9	0.0	0.0		-37.8		0.0	0.0	15.9
181	655467.71	4769225.68		0	D	46.5	11.9	0.0	0.0	0.0	-37.8	-4.7	0.0	0.0	15.9
190	655481.86	4769222.10	179.76	0	D	46.5	11.0	0.0	0.0	0.0	-38.4	-4.7	0.0	0.0	14.4
191		4769225.85			D	46.5	11.0	0.0	0.0		-38.4	-4.7	0.0	0.0	14.4
194	655541.17	4769225.09		0	D	46.5	12.6	0.0	0.0		-40.5	-4.7	0.0	0.0	13.9
195	655540.96	4769228.83	180.23		D	46.5	12.6	0.0	0.0	0.0	-40.5	-4.7	0.0	0.0	13.9
204	655433.41	4769217.71	180.07		D	46.5	8.4	0.0	0.0		-36.3		0.0	0.0	13.9
205	655433.08	4769221.44	180.07		D	46.5	8.4	0.0	0.0		-36.3	-4.6	0.0	0.0	13.9
		S 00 Namo:						_							

	Road, RI	S-90, Name:	"Stanley	/ Ave	S_Ma	rinelan	d Pkw	ay_Ra	amsey	Rd", I	D: "!0	2!2018	3_S08	"	
Nr.	Х	Y	Z	Refl.	DEN	LmE	DI	Dstg	Drefl	Κ	Ds	Dbm	Dz	RL	Lr
	(m)	(m)	(m)			dB(A)	dB	dB	dB	dB	(dB)	(dB)	(dB)	(dB)	dB(A)
81	656038.18	4769824.70	182.50	0	D	55.3	22.1	0.0	0.0	0.0	-54.1	-4.7	0.0	0.0	18.5

	Road, RI	S-90, Name:	"Stanley	Ave	S Ma	rinelan	d Pkw	ay Ra	amsey	Rd", I	D: "!0	2!2018	8 S08		
Nr.	X	Y	Z		DEN		DI		Drefl	K	Ds	Dbm	Dz	RL	Lr
	(m)	(m)	(m)			dB(A)	dB	dB	dB	dB	(dB)	(dB)	(dB)	(dB)	dB(A)
84	656034.43	4769824.65	182.50	0	D	55.3	22.1	0.0	0.0	0.0	-54.1	-4.7	0.0	0.0	18.6
162	656041.05	4769607.65	182.50	0	D	55.3	20.6	0.0	0.0	0.0	-52.6	0.0	4.8	0.0	18.6
163	656037.30	4769607.60	182.50	0	D	55.3	20.6	0.0	0.0	0.0	-52.5	0.0	4.8	0.0	18.6
164	656043.00	4769462.40	180.50	0	D	55.3	19.7	0.0	0.0	0.0	-51.8	0.0	4.8	0.0	18.5
165	656039.25	4769462.34	180.50	0	D	55.3	19.7	0.0	0.0	0.0	-51.7	0.0	4.8	0.0	18.5
170	656045.41	4769283.27	180.50	0	D	55.3	17.6	0.0	0.0	0.0	-51.3	-4.8	0.0	0.0	16.9
171		4769283.22		0	D	55.3	17.6	0.0	0.0		-51.2		0.0	0.0	16.9
174	656044.57	4769345.92	181.35	0	D	55.3	17.2	0.0	0.0		-51.4		0.0	0.0	16.4
175	656040.82	4769345.87	181.35	0	D	55.3	17.2	0.0	0.0	0.0	-51.3	-4.7	0.0	0.0	16.5
182	656039.47	4769727.42	181.72	0	D	55.3	15.2	0.0	0.0	0.0	-53.4	0.0	4.8	0.0	12.4
183	656035.72	4769727.37	181.72	0	D	55.3	15.2	0.0	0.0		-53.3		4.8	0.0	12.4
184	656042.01	4769535.40	181.60	0	D	55.3	14.2	0.0	0.0	0.0	-52.1	0.0	4.8	0.0	12.7
185	656038.26	4769535.34	181.60	0	D	55.3	14.2	0.0	0.0	0.0	-52.1	0.0	4.8	0.0	12.7
186	656138.99	4770075.70	182.50	0	D	55.3	16.9	0.0	0.0	0.0	-57.1	0.0	4.8	0.0	10.3
187	656136.62	4770078.60	182.50	0	D	55.3	16.9	0.0	0.0	0.0	-57.1	0.0	4.8	0.0	10.3
188	656037.66	4769923.58	182.50	0	D	55.3	15.6	0.0	0.0		-54.9	0.0	4.8	0.0	11.2
189	656033.91			0	D	55.3	15.6	0.0	0.0	0.0	-54.9	0.0	4.8	0.0	11.3
192	656081.71				D	55.3	15.5	0.0	0.0	0.0	-56.2		4.8	0.0	9.9
193	656079.04			0		55.3	15.5	0.0	0.0	0.0	-56.2	0.0	4.8	0.0	9.9
196	656050.50	4769982.51	182.50	0	D	55.3	14.9	0.0	0.0	0.0	-55.6	0.0	4.8	0.0	9.8
197	656047.11			0		55.3	14.9	0.0	0.0		-55.6	0.0	4.8	0.0	9.9
198	656041.14	4769955.24	182.50	0	D	55.3	14.5	0.0	0.0	0.0	-55.2	0.0	4.8	0.0	9.8
199	656037.48	4769956.03	182.50	0	D	55.3	14.5	0.0	0.0	0.0	-55.2	0.0	4.8	0.0	9.9
200	656173.15	4770103.07	182.89	0	D	55.3	15.9	0.0	0.0	0.0	-57.7	0.0	4.8	0.0	8.8
201	656170.83	4770106.02	182.89	0	D	55.3	15.9	0.0	0.0	0.0	-57.7	0.0	4.8	0.0	8.8
202	656107.07	4770049.66	182.50	0	D	55.3	15.2	0.0	0.0	0.0	-56.7	0.0	4.8	0.0	9.1
203	656104.70	4770052.57	182.50	0	D	55.3	15.2	0.0	0.0	0.0	-56.7	0.0	4.8	0.0	9.1
206	656044.11	4769379.68	181.59	0	D	55.3	11.8	0.0	0.0	0.0	-51.5	-4.7	0.0	0.0	10.9
207	656040.36	4769379.63	181.59	0	D	55.3	11.8	0.0	0.0	0.0	-51.4	-4.7	0.0	0.0	11.0
208	656040.18	4769673.71	181.74	0	D	55.3	12.4	0.0	0.0	0.0	-53.0	0.0	4.8	0.0	10.0
209	656036.43	4769673.66	181.74	0	D	55.3	12.4	0.0	0.0	0.0	-52.9	0.0	4.8	0.0	10.1
210	656039.80	4769701.95	180.91	0	D	55.3	12.5	0.0	0.0	0.0	-53.2	0.0	4.8	0.0	9.9
211	656036.06	4769701.90	180.91	0	D	55.3	12.5	0.0	0.0	0.0	-53.1	0.0	4.8	0.0	10.0
212	656042.28	4769515.63	180.60	0	D	55.3	11.2	0.0	0.0	0.0	-52.0	0.0	4.8	0.0	9.7
213	656038.53	4769515.58	180.60	0	D	55.3	11.2	0.0	0.0	0.0	-52.0	0.0	4.8	0.0	9.8
214	656063.10	4770005.02	182.50	0	D	55.3	13.4	0.0	0.0	0.0	-55.9	0.0	4.8	0.0	8.1
215	656060.02	4770007.16	182.50	0	D	55.3	13.4	0.0	0.0	0.0	-55.9	0.0	4.8	0.0	8.1
216		4769392.40		0		55.3	10.2	0.0	0.0		-51.5		0.0		9.3
217	656040.19	4769392.34	181.42	0	D	55.3	10.2	0.0	0.0	0.0	-51.5	-4.7	0.0	0.0	9.3
218	656043.69	4769410.60	180.87	0	D	55.3	10.1	0.0	0.0	0.0	-51.6	-4.7	0.0	0.0	9.1
219	656039.94	4769410.55	180.87	0		55.3	10.1	0.0	0.0	0.0	-51.5	-4.7	0.0	0.0	9.2
220		4770151.05		0		55.3		0.0	0.0		-58.4		0.0		5.6
221		4770152.21		0		55.3	13.4	0.0	0.0		-58.3		0.0	0.0	5.7
222		4769687.70		0		55.3	10.2	0.0	0.0		-53.1		4.8	0.0	7.7
223		4769687.65		0		55.3		0.0	0.0		-53.0		4.8		7.7
224		4769315.73		0		55.3	9.0	0.0	0.0		-51.3		0.0	0.0	8.2
225		4769315.68		0		55.3	9.0	0.0	0.0		-51.3		0.0		8.3
226		4769401.55		0		55.3	9.0	0.0	0.0		-51.5	-	0.0	0.0	8.0
227		4769401.50		0		55.3		0.0	0.0		-51.5		0.0		8.1
228		4770171.69		0		55.3		0.0	0.0		-58.6		0.0	0.0	5.2
229		4770172.65		0		55.3	13.2	0.0	0.0		-58.5		0.0	0.0	5.2
230		4770121.11		0		55.3	11.9	0.0	0.0		-58.0		4.8		4.5
231		4770123.58		0		55.3		0.0	0.0		-58.0		0.0	0.0	4.5
232			183.74	0		55.3		0.0	0.0		-58.2		0.0		4.3
233		4770135.71	183.74	0		55.3	11.9	0.0	0.0		-58.1		0.0	0.0	4.3
234		4769549.47	182.50	0		55.3	2.3	0.0	0.0		-52.2		0.0	0.0	0.7
235		4769549.42		0		55.3	2.3	0.0	0.0		-52.2		0.0	0.0	0.8
236		4770184.37		0		55.3	1.5	0.0	0.0		-58.7		0.0		-6.6
237		4770184.26		0		55.3	1.5	0.0	0.0		-58.7		0.0	0.0	-6.6
238		4770182.74		0		55.3	1.3		0.0		-58.7		0.0		-6.8
239	656216.21	4770183.12	184.50	0	D	55.3	1.3	0.0	0.0	0.0	-58.6	-4.7	0.0	0.0	-6.7

APPENDIX D

Noise Prediction Modelling Input Data

Industry ID	Facility/Source Name	Facility Address	Estimated Sound Power Level (dBA)
N01	Chemtrade - Compressor	6300 Oldfield Road	81
N01	Chemtrade - CO2 Truck Loading	6300 Oldfield Road	99
N01	Chemtrade - Rail Car Unloading Pump	6300 Oldfield Road	92
N01	Chemtrade - Rail Car Unloading Pump	6300 Oldfield Road	92
N01	Chemtrade - Rail Car Unloading Pump	6300 Oldfield Road	92
N01	Chemtrade - Rail Car Unloading Pump	6300 Oldfield Road	92
N01	Chemtrade - Portable Compressor	6300 Oldfield Road	98
N01	Chemtrade - Scrubber	6300 Oldfield Road	98
N01	Chemtrade - Railcar Air Brake	6300 Oldfield Road	122
N02	Washington Mills Electro Minerals Corporation	7780 Stanley Ave	118
N05	Niagara Pattern Limited	6135 Don Murie Street	97
N07	Brunner Manufacturing & Sales Ltd.	5720 Don Murie Street	97
N08	Tecna-Division of Brunner - East Side	5770 Don Murie Street	102
N08	Tecna-Division of Brunner - West Side	5770 Don Murie Street	104
N09	Laurcoat Inc.	8591 Earl Thomas Ave	98
N10	St. Lawrence Cement Inc. / Dufferin Concrete - Cement Truck Blower	5980 Don Murie Street	112
N10	St. Lawrence Cement Inc. / Dufferin Concrete - Loader	5980 Don Murie Street	111
N10	St. Lawrence Cement Inc. / Dufferin Concrete - Truck Loading (Fan Off)	5980 Don Murie Street	109
N10	St. Lawrence Cement Inc. / Dufferin Concrete - Truck Loading (Fan On)	5980 Don Murie Street	118
N10	St. Lawrence Cement Inc. / Dufferin Concrete - Truck Rinsing (Fan Off)	5980 Don Murie Street	108
N10	St. Lawrence Cement Inc. / Dufferin Concrete - Truck Rinsing (Fan On)	5980 Don Murie Street	118
N11	Pumpcrete Corporation	6000 Progress Street	108
N12	Mancuso Chemicals Limited	5635 & 5725 Progress Street	108
N14	Barbisan Allmetal Designs	5835 Progress Street	96
N16	Fencast Industries Ltd	6272 Kister Road	96
N19	Dyaco Canada Inc.	5955 Don Murie Street	98
N21	Gordon Wright Electrical Limited	6255 Don Murie Street	98
N23	Airwood Vents	6167 Don Murie Street	101
N30	Batemans Tires	8407 Stanley Avenue	98
N32	Salit Steel - Beam Offcuts in Bins - East Bin (Impulsive)	7771 Stanley Avenue	125
N32	Salit Steel - Beam Offcuts in Bins - West Bin (Impulsivee)	7771 Stanley Avenue	123
N32	Salit Steel - Material Handling North Yard (Impulsive)	7771 Stanley Avenue	123
N33	L. Wallter & Sons Excavating Ltd.	7527 Stanley Avenue	98
N40	Davert Tools	5676 Progress Street	98
N46	Niagara Fastener Inc.	6095 Progress Street	99
N50	Lafarge Quality Ready Mix - Cement Truck Blower	6224 Progress Street	112
N50	Lafarge Quality Ready Mix - Loader	6224 Progress Street	111
N50	Lafarge Quality Ready Mix - Truck Loading (Fan Off)	6224 Progress Street	109
N50	Lafarge Quality Ready Mix - Truck Loading (Fan On)	6224 Progress Street	118
N50	Lafarge Quality Ready Mix - Truck Rinsing (Fan Off)	6224 Progress Street	108
N50	Lafarge Quality Ready Mix - Truck Rinsing (Fan On)	6224 Progress Street	118
N52	Factor Forms and Labels	8481 Earl Thomas Avenue	98
N53	Stelfab Niagara Limited	8594 Earl Thomas Avenue	98
N54	Food Roll Sales (Niagara) Ltd.	8464 Earl Thomas Avenue	96
N56	Avid Growing Systems	8100 Dorchester Road	108
N57	Palfinger Inc.	7942 Dorchester Road	108

APPENDIX E

Sample Calculations

Report (1784512 Prenix Noise Feb2020 samplecalc.cna)

CALCULATION CONFIGURATION

Configuration	
Parameter	Value
General	
Country	(user defined)
Max. Error (dB)	0.00
Max. Search Radius (#(Unit,LEN))	2000.00
Min. Dist Src to Rcvr	0.00
Partition	
Raster Factor	0.50
Max. Length of Section (#(Unit,LEN))	1000.00
Min. Length of Section (#(Unit,LEN))	1.00
Min. Length of Section (%)	0.00
Proj. Line Sources	On
Proj. Area Sources	On
Ref. Time	
Reference Time Day (min)	960.00
Reference Time Night (min)	480.00
Daytime Penalty (dB)	0.00
Recr. Time Penalty (dB)	6.00
Night-time Penalty (dB)	10.00
DTM	10.00
Standard Height (m)	96.00
Model of Terrain	
Reflection	Triangulation
	2
max. Order of Reflection Search Radius Src	-
	100.00
Search Radius Rcvr	100.00
Max. Distance Source - Rcvr	1000.00 1000.00
Min. Distance Rvcr - Reflector	1.00 1.00
Min. Distance Source - Reflector	0.10
Industrial (ISO 9613)	
Lateral Diffraction	some Obj
Obst. within Area Src do not shield	On
Screening	Excl. Ground Att. over Barrier
	Dz with limit (20/25)
Barrier Coefficients C1,2,3	3.0 20.0 0.0
Temperature (#(Unit,TEMP))	10
rel. Humidity (%)	70
Ground Absorption G	0.50
Wind Speed for Dir. (#(Unit,SPEED))	3.0
Roads (RLS-90)	
Strictly acc. to RLS-90	
Railways (Schall 03 (1990))	
Strictly acc. to Schall 03 / Schall-Transrapid	
Aircraft (???)	
Strictly acc. to AzB	
,	1

NOISE SOURCES

Noise Source Library

Name	ID	Туре					Okta	ve Spe	ctrum (c	IB)					Source
			Weight.	31.5	63	125	250	500	1000	2000	4000	8000	Α	lin	
Class 2 industry sound	C2_1	Lw		98.5	99.3	101.6	93.6	92.8	94.7	90.5	83.9	75.1	98.0	105.9	Golder project
Class 2 industry sound 2	C2_2	Lw		115.9	113.0	111.4	107.6	105.5	103.5	99.0	89.1	65.3	108.0	119.3	Golder project
Class 3 industry sound	C3_1	Lw		100.7	108.8	110.7	103.3	107.1	109.5	107.4	98.6	77.0	113.0	116.3	Golder project
Class 3 industry sound 2	C3_2	Lw		129.9	126.1	124.6	122.7	114.6	108.8	105.6	102.5	97.1	118.0	132.8	Golder project
Rail_Locomotive Idling	Rail_10	Lw		105.0	100.0	95.0	97.0	99.0	100.0	101.0	102.0	102.0	108.0	110.5	CTA - PWL =108 dBA
Railway - Locomotive Idling - Marshalling Yard	S200	Lw		109.0	104.0	99.0	101.0	103.0	104.0	105.0	106.0	106.0	112.0	114.5	Modified ENC (-18 dB) / Diesel generator / Exhaus
Railway - Crossover - Marshalling Yard	S204	Lw		103.9	109.6	104.7	95.5	93.5	92.9	90.1	84.9	81.5	98.0	111.9	Golder project
Diesel Locomotive - 3355 kW - Passby	S208	Lw		127.0	122.0	117.0	119.0	121.0	122.0	123.0	124.0	124.0	130.0	132.5	Modified ENC / Diesel generator / Exhaust noise w
Shunting Diesel Locomotive - 500 kW - Passby	S209	Lw		122.7	117.7	112.7	114.7	116.7	117.7	118.7	119.7	119.7	125.7	128.2	ENC / Diesel generator / Exhaust noise without tu
Railway Wheel Squeal	S210	Lw		112.2	122.2	109.6	109.1	97.2	95.0	99.5	134.0	110.3	135.0	134.4	Golder project
Railway Impulses	S211	Lw		105.2	104.6	100.7	112.8	118.6	124.3	120.4	114.9	110.7	127.0	127.2	Golder project
Railcar - Passby	S212	Lw		113.6	119.3	111.7	109.6	106.6	101.9	109.5	105.7	105.1	113.9	121.9	Golder project
Truck Loading - Fan Off	QRM01	Lw		100.4	102.0	107.5	101.1	104.8	103.9	101.8	98.4	93.3	108.6	112.4	Golder project
Truck Loading - Fan On	QRM02	Lw		102.3	108.9	110.8	122.1	117.4	110.3	108.4	101.7	97.0	118.5	124.1	Golder project

Name	ID	Туре					Okta	ve Spe	ctrum (c	dB)					Source
			Weight.	31.5	63	125	250	500	1000	2000	4000	8000	Α	lin	
Truck Rinsing - Fan Off	QRM03	Lw		101.8	104.7	107.4	102.4	104.8	102.2	102.1	98.3	92.6	108.2	112.8	Golder project
Truck Rinsing - Fan On	QRM04	Lw		102.9	109.8	112.7	120.4	114.9	111.4	108.8	103.2	97.6	117.6	122.9	Golder project
Truck Pass-By	QRM05	Lw		99.7	106.5	108.5	105.5	103.1	101.7	100.3	95.7	89.4	107.1	113.2	Golder project
Loader	QRM06	Lw		96.0	108.1	117.5	110.0	106.1	105.7	104.7	99.9	94.7	111.4	119.3	Golder project
Cement Truck Blower	QRM07	Lw		105.6	109.9	114.1	107.5	104.9	102.3	97.8	91.2	78.7	107.5	117.0	Golder project
Dust Collector	DC01	Lw		108.7	109.5	95.6	94.5	93.5	90.3	86.1	86.6	84.0	96.2	112.4	Golder project
Gantry Crane	GC01	Lw		104.0	106.0	117.0	105.0	103.0	101.0	100.0	96.0	87.0	107.6	118.1	Golder project
CO2 Truck loading operation	CO2TLO	Lw		99.0	94.0	94.0	90.0	96.0	95.0	93.0	87.0	79.0	99.3	103.7	Chemtrade AAR
Scrubber	Scru	Lw		81.0	81.0	83.0	89.0	93.0	92.0	92.0	90.0	88.0	98.1	99.1	Chemtrade AAR
Portable Compressor	PC	Lw		106.0	99.0	90.0	88.0	89.0	94.0	92.0	85.0	81.0	97.5	107.4	Chemtrade AAR
Rail Cars Unloading Pump	RCUP	Lw		78.0	73.0	72.0	80.0	84.0	90.0	83.0	79.0	71.0	91.8	92.4	Chemtrade AAR
Compressor Louvre	Comp	Lw		68.0	71.0	70.0	76.0	80.0	77.0	73.0	68.0	56.0	81.4	83.9	Chemtrade AAR
Railcar Air Break	RAB	Lw		84.0	79.0	75.0	80.0	87.0	94.0	106.0	114.0	112.0	116.9	116.6	Chemtrade AAR
Shunting Machine	SM	Lw		96.0	96.0	112.0	115.0	102.0	104.0	99.0	95.0	86.0	109.8	117.3	Chemtrade AAR
Traffic Activities	TR	Lw		0.0	105.0	105.0	104.0	102.0	95.0	88.0	84.0	82.0	102.1	110.4	Chemtrade AAR

Point Source(s)

Name	M.	ID	R	esult. PV	/L		Lw / Li			Correction	ı	Soun	d Reduction	Attenuation	Op	erating 1	ïme	K0	Freq.	Direct.	Height	C	Coordinates	-
			Day	Evening	Night	Туре	Value	norm.	Day	Evening	Night	R	Area		Day	Special	Night					Х	Y	Z
			(dBA)	(dBA)	(dBA)			dB(A)	dB(A)	dB(A)	dB(A)		(m ²)		(min)	(min)	(min)	(dB)	(Hz)		(m)	(m)	(m)	(m)
1683063 Ontario Inc	-	10016100 Progress	0.0	0.0	0.0	Lw			0.0	0.0	0.0				<u> </u>			0.0		(none)	3.00 r	655206.81	4768575.00	182.11
Air Liquide Canada Inc	-	10016090 Don Murie	0.0	0.0	0.0	Lw			0.0	0.0	0.0							0.0		(none)	3.00 r	655245.77	4768231.23	0.00
Airwood Vents	~	1000616167 Don Murie	101.2	101.2	101.2	Lw	DC01	101.2	0.0	0.0	0.0							0.0		(none)	8.00 r	655139.27	4768312.63	186.00
Avid Growing Systems	~	!0005!8100 Dorchester	108.0	108.0	108.0	Lw	C2 2		0.0	0.0	0.0							0.0		(none)	3.00 r	653686.87	4769061.42	2 183.00
Aztec Frames	-	10016025 Progress	0.0	0.0	0.0	Lw	_		0.0	0.0	0.0							0.0		(none)	3.00 r	655416.55	4768666.84	0.00
BA Canada (was Edscha)	-	10015795 Don Murie	108.0	108.0	108.0	Lw	C2 2		0.0	0.0	0.0							0.0		(none)	3.00 r	655684.55	4768256.33	181.00
Barbisan Allmetal Designs	~	1000915835 Progress	96.4	96.4	96.4	Lw	C2 2	96.4	0.0	0.0	0.0							0.0		(none)	4.00 r	655614.69	4768679.02	2 183.83
Batemans Tires	~	1000B18407 Stanley	98.0	98.0		Lw	C2 1		0.0		0.0							0.0		(none)	3.00 r		4768690.63	
Brunner Manufacturing & Sales Ltd	~	1000E15720 Don Murie	96.8	96.8			C2 1	96.8	-	-	0.0							0.0		(none)	3.00 r		4768335.76	
Can Mar Manufacturing Inc	-	10015869 Progress	108.0	108.0	108.0	Lw	C2 2		0.0	-	0.0							0.0		(none)	3.00 r		4768717.00	-
Chemtrade - CO2 Truck Loading		1000LICO2TO	99.3	99.3		Lw	CO2TLO		0.0	-	0.0							0.0		(none)	3.00 r		4769345.85	
Chemtrade - Compressor		!000L!Comp	81.4	81.4			Comp		0.0	-	0.0							0.0		(none)	1.00 r		4769332.85	-
Chemtrade - Portable Compressor		1000LIPC	97.5	97.5	97.5	Lw	PC		0.0		0.0							0.0		(none)	1.00 r		4769303.35	
Chemtrade - Rail Car Unloading Pump		1000L!RCUP4	91.8	91.8			RCUP		0.0	-	0.0							0.0		(none)	0.50 r		4769314.16	
Chemtrade - Rail Car Unloading Pump		1000LIRCUP3	91.8	91.8			RCUP		0.0		0.0							0.0		(none)	0.50 r		4769306.03	_
Chemtrade - Rail Car Unloading Pump	-	1000LIRCUP2	91.8	91.8			RCUP		0.0	-	0.0							0.0		(none)	0.50 r		4769298.72	
Chemtrade - Rail Car Unloading Pump	1	1000LIRCUP1	91.8	91.8			RCUP	-	0.0		0.0					-		0.0		(none)	0.50 r		4769290.60	-
Chemtrade - Railcar Air Brake	+	1000LIRAB	121.9	121.9			RAB		5.0	-	5.0				32.00	0.00	0.00	0.0		(none)	2.00 r		4769290.00	
Chemtrade - Scrubber	\vdash	1000L!RAB	98.1	98.1	98.1	Lw	Scru		0.0	-	0.0				52.00	. 0.00	0.00	0.0		(none)	1.00 r		4769306.21	-
Collins Concessions Ltd	1	10001/3010 10018621 Earl Thomas	0.0	0.0		Lw	John	-	0.0	-	0.0					-		0.0		(none)	3.00 r		4769300.21	
Collins Concessions Ltd CYRO Canada Inc	+-	10018621 Earl Thomas 10018100 Dorchester	0.0	0.0		Lw		-	0.0	-	0.0					-		0.0		(none)	3.00 r 3.00 r		4768402.18	-
	-		98.0	98.0			C2 1		0.0		0.0							0.0		· /	3.00 r		4769052.38	
Davert Tools	~	1000KI5676 Progress				Lw	-			-										(none)			4768202.75	
Deflecto Canada	~	1000A!8699 Stanley	98.0	98.0	98.0	Lw	C2_1		0.0		0.0				700.00	0.00	360.00	0.0		(none)	3.00 r			
Dufferin Ready Mix - Cement Truck Blower	~	10003!DRM07	112.5				QRM07		5.0		5.0				720.00			0.0		(none)	1.80 r		4768415.56	
Dufferin Ready Mix - Loader	~	10003!DRM06	111.4	111.4			QRM06		0.0	-	0.0				280.00		140.00	0.0		(none)	2.40 r		4768434.20	
Dufferin Ready Mix - Truck Loading, Fan Off	~	10003!DRM01	108.6	108.6		Lw	QRM01		0.0	-	0.0				280.00		140.00	0.0		(none)	1.80 r		4768415.27	-
Dufferin Ready Mix - Truck Loading, Fan On	~	!0003!DRM02	118.5	118.5		Lw	QRM02		0.0	-	0.0				280.00	-	140.00	0.0		(none)	1.80 r		4768415.20	-
Dufferin Ready Mix - Truck Rinsing - Fan Off	~	!0003!DRM03	108.2	108.2			QRM03		0.0		0.0				280.00			0.0		(none)	1.80 r		4768363.73	
Dufferin Ready Mix - Truck Rinsing - Fan On	~	!0003!DRM04	117.6	117.6			QRM04		0.0	-	0.0				280.00	0.00	140.00	0.0		(none)	1.80 r		4768363.80	
Dyaco Canada Inc	~	1000J15955 Don Murie	98.0	98.0		Lw	C2_1		0.0		0.0							0.0		(none)	3.00 r		4768226.31	_
Factor Forms and Labels	~	1000718481 Earl Thomas	98.0	98.0			C2_1		0.0	-	0.0							0.0		(none)	4.00 r		4768562.00	-
Falls Contracting Inc	-	10015850 Don Murie	0.0	0.0		Lw			0.0		0.0							0.0		(none)	3.00 r		4768347.00	
Fastenal	-	10016537 Kister	0.0	0.0					0.0	-	0.0							0.0		(none)	3.00 r		4768331.00	
Fencast Industries Ltd	~	1000P16272 Kister	96.2			Lw	DC01		0.0	-	0.0							0.0		(none)	3.00 r		4768728.97	-
Food Roll Sales (Niagara) Ltd	~	!000N!8464 Earl Thomas	96.0	96.0		Lw	C2_1	96.0		-	0.0							0.0		(none)	3.00 r		4768596.50	
Fred's Concrete	-	10015806 Ramsey	108.0	108.0		Lw	C2_2		0.0	-	0.0							0.0		(none)	3.00 r		4769176.99	-
GC Customs Services Inc	-	10016045 Progress	0.0	0.0					0.0	-	0.0							0.0		(none)	3.00 r		4768669.50	
Gordon Wright Electrical Limited	~	1000C16255 Don Murie	98.0	98.0		Lw	C2_1		0.0	-	0.0							0.0		(none)	4.00 r		4768261.37	_
H & L Tool and Die Ltd	-	10015955 Don Murie	0.0	0.0		Lw			0.0		0.0							0.0		(none)	3.00 r		4768226.17	_
Hangups Sportware	-	10016537 Kister	0.0	0.0	0.0	Lw			0.0	0.0	0.0							0.0		(none)	3.00 r	655238.00	4768331.00	0.00
Hoco Limited	-	10015720 Progress	108.0	108.0	108.0	Lw	C2_2		0.0		0.0							0.0		(none)	3.00 r		4768555.50	
International Sew-Right	-	10016190 Don Murie	0.0	0.0		Lw			0.0	-	0.0							0.0		(none)	3.00 r		4768182.00	
L Wallter & Sons Excavating Ltd	~	!0000!7527 Stanley	98.0	98.0		Lw	C2_1		0.0	0.0	0.0							0.0		(none)	3.00 r	655884.32	4769895.78	8 185.51
Laurcoat Inc	~	!000M!8591 Earl Thomas	98.0	98.0	98.0	Lw	C2_1		0.0	0.0	0.0							0.0		(none)	3.00 r	655634.88	4768446.00	181.53
Louver-Lite	-	10016015 Progress	0.0	0.0	0.0	Lw			0.0	0.0	0.0							0.0		(none)	3.00 r	655474.25	4768713.00	0.00
Mancuso Chemicals Limited	~	1000015635_5725 Progres	108.0	108.0	108.0	Lw	C2_2		0.0	0.0	0.0							0.0		(none)	3.00 r	655695.99	4768741.69	183.00
Marine Clean Ltd	-	10016220 Don Murie	0.0	0.0	0.0	Lw			0.0	0.0	0.0							0.0		(none)	3.00 r	655038.49	4768165.47	0.00
Marineland Canada	-	10015680 Don Murie	0.0	0.0	0.0	Lw			0.0	0.0	0.0							0.0		(none)	3.00 r	655896.95	4768386.91	0.00
Marineland Canada	-	10018455 Stanley	0.0	0.0	0.0	Lw			0.0	0.0	0.0							0.0		(none)	3.00 r	656023.56	4768612.00	0.00
Marineland Canada	-	10018529 Stanley	0.0	0.0	0.0	Lw			0.0	0.0	0.0							0.0		(none)	3.00 r	656038.73	4768370.65	0.00
Marineland Canada	-	10018559 Stanley	0.0	0.0	0.0	Lw			0.0	0.0	0.0							0.0		(none)	3.00 r		4768459.15	-
Micron Installations	-	10016501 Kister	0.0	0.0		Lw			0.0	0.0	0.0							0.0		(none)	3.00 r		4768392.00	
Niagara Analytical Laboratories	-	10015805 Progress	0.0	0.0		Lw			0.0	0.0	0.0							0.0		(none)	3.00 r		4768699.30	-
Niagara Bus Wash		10016441 Kister	0.0			Lw			0.0		0.0							0.0		(none)	3.00 r		4768484.00	
Niagara Commercial Coating & Insulation	-	10016260 Don Murie	0.0			Lw			0.0									0.0		(none)	3.00 r		4768179.50	
Niagara Fastener Inc	~	1000F16095 Progress	98.6			Lw	C2_1	98.6								1		0.0		(none)	4.00 r		4768727.58	
Niagara Fence Supply	-	10016065 Progress	0.0				<u></u> '	- 30.0	0.0		0.0							0.0		(none)	3.00 r		4768666.50	
Niagara Industrial Finishes Inc		10010003 Progress	108.0				C2 2		0.0							-		0.0		(none)	3.00 r		4768706.10	
Niagara Moving and Storage		10015635 Progress 10017825 Dorchester	0.0			Lw			0.0									0.0		· /	3.00 r		4769515.00	
			97.4					97.4								-				(none)			4769515.00	
Niagara Pattern Limited		1000816135 Don Murie		97.4		Lw	DC01	97.4			0.0					-		0.0		(none)	8.00 r			
Niagara River Trading	-	10016199 Don Murie	0.0			Lw			0.0		0.0							0.0		(none)	3.00 r		4768309.00	
Niagara RV & Trailer Center	-	10016471 Kister	0.0	0.0	0.0	Lw			0.0	0.0	0.0							0.0		(none)	3.00 r	655216.06	4768438.50	0.00

Name	М.	ID	Re	esult. PWI	L		Lw / Li			Correction	ı	Sound	d Reduction	Attenuation	Op	erating T	ime	K0	Freq. Dire	t. Height	C	oordinates	
			Day	Evening	Night	Туре	Value	norm.	Day	Evening	Night	R	Area		Day	Special	Night				Х	Y	Z
			(dBA)	(dBA)	(dBA)			dB(A)	dB(A)	dB(A)	dB(A)		(m²)		(min)	(min)	(min)	(dB)	(Hz)	(m)	(m)	(m)	(m)
Palfinger Inc	~	!000G!7942 Dorchester	108.0	108.0	108.0	Lw	C2_2		0.0	0.0	0.0							0.0	(nor	e) 3.00 r	653659.81	4769313.86	183.97
Peglow Tool & Die Inc	-	10018345 Stanley	0.0	0.0	0.0	Lw			0.0	0.0	0.0							0.0	(nor	e) 3.00 r	656010.88	4768792.00	0.00
Provincial Design & Fabrication Inc	-	10016159 Progress	108.0	108.0	108.0	Lw	C2_2		0.0									0.0	(nor	e) 3.00 r	655110.90	4768698.17	183.00
Pumpcrete Corporation	~	1000H16000 Progress	108.0	108.0	108.0	Lw	C2_2		0.0	0.0	0.0							0.0	(nor	e) 3.00 r	655474.25	4768536.50	181.94
Quality Ready Mix	-	10016224 Progress	108.0	108.0	108.0	Lw	C2_2		0.0		0.0							0.0	(nor	e) 3.00 r	654989.63	4768550.33	182.19
Quality Ready Mix - Cement Truck Blower	~	!0002!QRM07	112.5	112.5	112.5	Lw	QRM07		5.0	5.0	5.0				720.00	0.00	360.00	0.0	(nor	e) 1.80 r	654998.57	4768537.26	181.33
Quality Ready Mix - Loader	~	100021QRM06	111.4				QRM06		0.0		0.0				280.00	0.00	140.00	0.0	(nor	/ .	655011.66	4768493.62	182.26
Quality Ready Mix - Truck Loading, Fan Off	~	!0002!QRM01	108.6	108.6	108.6	Lw	QRM01		0.0						280.00	0.00	140.00	0.0	(nor	e) 1.80 r	654973.84	4768546.44	181.15
Quality Ready Mix - Truck Loading, Fan On	~	!0002!QRM02	118.5	118.5	118.5	Lw	QRM02		0.0		0.0				280.00	0.00	140.00	0.0	(nor	e) 1.80 r	654973.84	4768546.60	181.15
Quality Ready Mix - Truck Rinsing - Fan Off	~	!0002!QRM03	108.2	108.2	108.2	Lw	QRM03		0.0		0.0				280.00	0.00	140.00	0.0	(nor	e) 1.80 r	654982.53	4768563.48	181.41
Quality Ready Mix - Truck Rinsing - Fan On	~	!0002!QRM04	117.6	117.6	117.6	Lw	QRM04		0.0	0.0	0.0				280.00	0.00	140.00	0.0	(nor	e) 1.80 r	654982.49	4768563.72	181.41
Salit Steel - Impulsive#1 East	~	!000401!7771 Stanley	124.6	124.6	124.6	Lw	S211+2.8		0.0	0.0	0.0			5.2				0.0	(nor	/	655975.32	4769623.27	185.00
Salit Steel - Impulsive#1 West	~	!000400!7771 Stanley	123.2	123.2	123.2	Lw	S211+1.5		0.0	0.0	0.0			5.3				0.0	(nor	e) 3.00 r	655914.01	4769624.65	185.00
Specialty Cast Metals Ltd	-	10015635 Progress	108.0	108.0	108.0	Lw	C2_2		0.0	0.0								0.0	(nor	e) 3.00 r	655854.14	4768709.21	183.00
Spencer ARL	-	10016040 Progress	108.0	108.0	108.0	Lw	C2_2		0.0	0.0								0.0	(nor		655291.61	4768519.93	181.45
St Lawrence Cement Inc / Dufferin Concrete	-	10015980 Don Murie	108.0	108.0	108.0	Lw	C2_2		0.0	0.0	0.0							0.0	(nor	e) 3.00 r	655485.00	4768384.50	181.31
Stelfab Niagara Limited	~	1000118594 Earl Thomas	98.0	98.0	98.0	Lw	C2_1		0.0	0.0	0.0							0.0	(nor	e) 3.00 r	655731.61	4768451.22	181.20
T Hodgson & Co Ltd	-	10016411 Kister	0.0	0.0	0.0	Lw			0.0	0.0	0.0							0.0	(nor	e) 3.00 r	655209.94	4768529.50	0.00
Tecna-Division of Brunner	~	1000115770 Don Murie_B	102.1	102.1	102.1	Lw	C2_2	102.1	0.0									0.0	(nor	e) 3.00 r	655766.06	4768356.16	181.00
Tecna-Division of Brunner	~	1000115770 Don Murie_A	103.8	103.8	103.8	Lw	C2_2	103.8	0.0	0.0	0.0							0.0	(nor	e) 3.00 r	655723.90	4768363.24	181.00
Unit 1 Advanced Cryogenic Services	-	10016100 Progress	0.0	0.0	0.0	Lw			0.0		0.0							0.0	(nor	/	655206.81	4768575.00	0.00
Washington Mills Electro Minerals Corporation	n ~	!000D!7780 Stanley	118.0	118.0	118.0	Lw	C3_2		0.0	0.0	0.0							0.0	(nor	e) 3.00 r	656208.52	4769743.94	185.49

Line Source(s)

Name	М.	ID	R	esult. PV	/L	R	esult. PW	'L'		Lw / Li			Correction	n	Sound	d Reduction	Attenuation	Ope	erating Ti	ime	K0	Freq.	Direct.		Moving	Pt. Src	
			Day	Evening	Night	Day	Evening	Night 1	Гуре	Value	norm.	Day	Evening	Night	R	Area		Day	Special	Night					Number		Speed
			(dBA)	(dBA)	(dBA)	(dBA)	(dBA)	(dBA)			dB(A)	dB(A)	dB(A)	dB(A)		(m²)		(min)	(min)	(min)	(dB)	(Hz)		Day	Evening	Night	(km/h)
Quality Ready Mix - Truck Passby	~	!0002!QRM05	95.8	-15.7	95.8	75.5	-36.0	75.5 PV	NL-Pt	QRM05		0.0	0.0	0.0							0.0		(none)	14.0	0.0	14.0	20.0
Dufferin Ready Mix - Truck Passby	~	!0003!DRM05	97.4	-11.1	97.4	72.5	-36.0	72.5 PV	NL-Pt	QRM05		0.0	0.0	0.0							0.0		(none)	7.0	0.0	7.0	20.0
Chemtrade Traffic		!000L!TR	86.8	-13.2	-13.2	59.1	-40.9	-40.9 PV	NL-Pt	TR		0.0	0.0	0.0				480.00	0.00	0.00	0.0		(none)	1.0	0.0	0.0	20.0
Chemtrade - Shunting		!000L!S12	105.0	-5.7	-5.7	78.8	-32.0	-32.0 PV	NL-Pt	SM		0.0	0.0	0.0							0.0		(none)	12.0	0.0	0.0	15.0
Chemtrade - Shunting		!000L!S12	103.5	-7.3	-7.3	78.8	-32.0	-32.0 PV	NL-Pt	SM		0.0	0.0	0.0							0.0		(none)	12.0	0.0	0.0	15.0

Area Source(s)

Name	М.	ID	R	esult. PV	/L	R	esult. PW	L"		Lw / Li			Correctior	I	Sound	Reduction	Attenuation	Op	erating T	ime	K0	Freq.	Direct.	Мс	oving Pt. S	Src
			Day	Evening	Night	Day	Evening	Night	Туре	Value	norm.	Day	Evening	Night	R	Area		Day	Special	Night					Number	
			(dBA)	(dBA)	(dBA)	(dBA)	(dBA)	(dBA)			dB(A)	dB(A)	dB(A)	dB(A)		(m²)		(min)	(min)	(min)	(dB)	(Hz)		Day	Evening	Night
Material Handling North Yard - Salit Impulsive	~	!000402!	123.1	123.1	123.1	80.4	80.4	80.4	Lw	QRM06+18.4		0.0	0.0	0.0			6.7				0.0		(none)			

Barrier(s)

Name	M.	ID	Abso	rption	Z-Ext.	Canti	lever	н	ei	ght	Length
			left	right		horz.	vert.	Begin		End	
					(m)	(m)	(m)	(m)		(m)	(m)
Barrier - 5m		0	0.60	0.60				5.00	r		159
Barrier - 5m		0	0.60	0.60				5.00	r		451
Barrier - 3m		0	0.60	0.60				3.00	r		137
Barrier - 3m		0	0.60	0.60				3.00	r		570
Barrier - 3m		0	0.60	0.60				3.00	r		301
Barrier - 5m		0	0.60	0.60				5.00	r		201
Barrier - 3m		0	0.60	0.60				3.00	r		322
Barrier - 5m		0	0.60	0.60				5.00	r		127

Building(s)

Name	М.	ID	RB	Residents	Absorption	Height	Coord	inates
						Begin	х	у
						(m)	(m)	(m)
Apartment_VistaGate	-	Apartment_VistaGate	х	0	0.37	30.00 r	655272.39	4769674.52
GreenVistaGate1		GreenVistaGate1	x	0	0.37	6.00 r	655357.96	4769741.84
GreenVistaGate2		GreenVistaGate2	х	0	0.37	6.00 r	655393.40	4769774.36
GreenVistaGate3		GreenVistaGate3	x	0	0.37	6.00 r	655428.46	4769805.73
GreenVistaGate4		GreenVistaGate4	x	0	0.37	6.00 r	655463.66	4769836.94
GreenVistaGate5		GreenVistaGate5	x	0	0.37	6.00 r	655328.86	4769771.05
GreenVistaGate6		GreenVistaGate6	x	0	0.37	6.00 r	655361.99	4769801.42
GreenVistaGate7		GreenVistaGate7	х	0	0.37	6.00 r	655404.50	4769838.40
GreenVistaGate8		GreenVistaGate8	x	0	0.37	6.00 r	655384.00	4769861.83
QualityReadyMix		OffSite_B001	x	0	0.37	9.00 r	654990.46	4768547.25
Off-Site Building		OffSite_B002	x	0	0.37	3.00 r	654741.87	4768697.52
Off-Site Building		OffSite_B003	x	0	0.37	6.00 r	655345.07	4768507.68
Off-Site Building		OffSite_B004	x	0	0.37	3.00 r	655396.05	4768382.41
Off-Site Building		OffSite_B005	x	0	0.37	3.00 r	655204.57	4768692.10
Off-Site Building		OffSite_B006	x	0	0.37	6.00 r	655322.44	4768735.21
Off-Site Building		OffSite_B007	x	0	0.37	3.00 r	655478.12	4768552.76

Name	M. ID	RB R	Residents .	Absorption	Height	Coord	inates
					Begin	х	у
07.01. 5.11	0.000				(m)	(m)	(m)
Off-Site Building Off-Site Building	OffSite_B008 OffSite B009	x	0	0.37	6.00 r 3.00 r	655465.68 655493.52	4768549.27 4768498.27
Off-Site Building	OffSite B010	x	0	0.37	4.50 r	655113.08	
Off-Site Building	OffSite B011	x	0	0.37	6.00 r	655472.24	4768736.10
SalitBuilding	OffSite B012	x	0		6.00 r	655848.60	4769714.65
SalitBuilding	OffSite_B013	x	0		5.00 r	655918.60	4769649.92
SalitBuilding	OffSite_B014	x	0		5.00 r	655963.04	4769638.46
Chemtrade Quonset Hut	OffSite_B015	x	0	0.37	4.50 r	654718.93	4769367.55
Sulphuric Acid Storage Tank	OffSite_B016	x	0	0.37	9.00 r	654692.55	4769335.63
Chemtrade Sulphuric Acid Storage Tank	OffSite_B017	x	0	0.37	7.30 r	654780.92	4769406.79
Chemtrade Office	OffSite_B018	x	0	0.37	4.20 r	654817.08	4769411.36
Off-Site Building	OffSite_B019 OffSite_B020	X	0	0.37	6.00 r	655415.17	4768657.05
Off-Site Building	OffSite_B020	x	0	0.37	4.00 r	655370.72 655371.44	4768666.09
Off-Site Building Off-Site Building	OffSite_B021	x	0	0.37	3.00 r 3.00 r	655290.09	4768650.64 4768663.27
Off-Site Building	OffSite B023	x	0	0.37	6.00 r	655502.06	4769180.33
Off-Site Building	OffSite B024	x	0	0.37	3.00 r	655415.96	4769193.05
Off-Site Building	OffSite B025	x	0	0.37	3.00 r	655338.84	
Off-Site Building	OffSite B026	x	0	0.37	3.00 r	655555.84	4768674.29
Off-Site Building	OffSite_B027	x	0	0.37	3.00 r	655602.61	4768675.94
Off-Site Building	OffSite_B028	x	0	0.37	3.00 r	655654.42	4768680.40
Off-Site Building	OffSite_B029	x	0	0.37	4.00 r	655545.66	4768480.40
Off-Site Building	OffSite_B030	x	0	0.37	3.00 r	655579.76	4769203.52
Off-Site Building	OffSite_B031	x	0	0.37	3.00 r	655598.81	4769204.40
Off-Site Building	OffSite_B032	x	0	0.37	3.00 r	655623.35	4769203.52
Off-Site Building	OffSite_B033	X	0	0.37	3.00 r	655542.76	
On-Site Buildings	OnSite_B001 OnSite B002	x	0	0.37	11.00 r 11.00 r		4769266.78
On-Site Buildings On-Site Buildings	OnSite_B002 OnSite_B003	x	0	0.37	11.00 r 11.00 r	655602.81 655573.62	4769297.45 4769328.39
On-Site Buildings	OnSite_B003	x	0	0.37	11.00 r	655543.42	4769342.69
On-Site Buildings	OnSite B005	x	0	0.37	11.00 r	655513.81	4769356.05
On-Site Buildings	OnSite B006	x	0	0.37	11.00 r	655505.58	4769302.69
On-Site Buildings	OnSite B007	x	0	0.37	11.00 r	655532.12	4769290.13
On-Site Buildings	OnSite_B008	x	0	0.37	11.00 r	655557.34	4769265.90
On-Site Buildings	OnSite_B009	x	0	0.37	11.00 r	655502.41	4769259.03
On-Site Buildings	OnSite_B010	x	0	0.37	11.00 r	655460.63	4769253.61
On-Site Buildings	OnSite_B011	x	0	0.37	11.00 r	655382.76	4769254.02
On-Site Buildings	OnSite_B012	x	0	0.37	11.00 r	655426.67	4769279.09
On-Site Buildings	OnSite_B013	x	0	0.37	11.00 r	655462.76	
On-Site Buildings	OnSite_B014	x	0	0.37	11.00 r	655350.99	4769282.34
On-Site Buildings	OnSite_B015	x	0	0.37	11.00 r	655352.60	4769252.40
On-Site Buildings On-Site Buildings	OnSite_B016 OnSite B017	x	0	0.37	11.00 r 11.00 r	655297.94 655247.62	4769244.76 4769248.08
On-Site Buildings	OnSite_B017	x	0	0.37	11.00 r	655255.63	4769277.00
On-Site Buildings	OnSite B019	x	0	0.37	11.00 r	655301.60	
On-Site Buildings	OnSite B020	x	0	0.37	14.00 r	655412.97	4769601.59
On-Site Buildings	OnSite B021	x	0	0.37	11.00 r	655334.53	4769543.89
On-Site Buildings	OnSite_B022	x	0	0.37	11.00 r	655368.78	4769504.91
On-Site Buildings	OnSite_B023	x	0	0.37	14.00 r	655446.00	4769533.57
On-Site Buildings	OnSite_B024	х	0	0.37	14.00 r	655525.03	4769446.73
On-Site Buildings	OnSite_B025	x	0	0.37	14.00 r	655593.56	
On-Site Buildings	OnSite_B026	x	0	0.37	14.00 r		4769294.46
On-Site Buildings	OnSite_B027	x	0	0.37	11.00 r	655492.60	4769431.91
On-Site Buildings	OnSite_B028	x	0	0.37	11.00 r	655463.09	4769406.18
On-Site Buildings On-Site Buildings	OnSite_B029 OnSite B030	x	0	0.37	11.00 r 11.00 r	655485.85 655204.91	4769374.14 4769647.96
On-Site Buildings	OnSite_B030	x	0	0.37	11.00 r	655223.69	4769692.27
On-Site Buildings	OnSite_B031	x	0	0.37	11.00 r	655244.55	4769692.27
On-Site Buildings	OnSite B033	X	0	0.37	6.00 r	655452.04	4769338.67
On-Site Buildings	OnSite_B034	x	0	0.37	6.00 r	655417.17	4769377.94
On-Site Buildings	OnSite_B035	x	0	0.37	6.00 r	655392.43	4769406.11
On-Site Buildings	OnSite_B036	x	0	0.37	6.00 r	655355.97	4769443.98
On-Site Buildings	OnSite_B037	x	0	0.37	6.00 r	655331.23	4769472.14
On-Site Buildings	OnSite_B038	x	0	0.37	6.00 r	655293.35	4769508.75
On-Site Buildings	OnSite_B039	x	0	0.37	6.00 r	655319.71	4769462.09
On-Site Buildings	OnSite_B040	x	0	0.37	6.00 r	655308.43	4769452.17
On-Site Buildings	OnSite_B041	x	0	0.37	6.00 r	655297.42	4769442.58
On-Site Buildings	OnSite_B042	x	0	0.37	6.00 r	655285.89	4769432.60
On-Site Buildings	OnSite_B043	x	0	0.37	6.00 r	655274.63	4769422.56
On-Site Buildings On-Site Buildings	OnSite_B044 OnSite B045	x	0	0.37	6.00 r 6.00 r	655263.92 655253.59	4769412.29 4769401.53
On-Site Buildings	OnSite_B045	x x	0	0.37	6.00 r 6.00 r	655253.59	4769391.81
On-Site Buildings	OnSite_B040	×	0	0.37	6.00 r	655231.05	4769382.09
On-Site Buildings	OnSite B048	X	0	0.37	6.00 r	655219.39	4769371.99
On-Site Buildings	OnSite B049	X	0	0.37	6.00 r	655207.99	4769361.88
On-Site Buildings	OnSite_B050	x	0	0.37	6.00 r	655282.04	4769498.78
On-Site Buildings	OnSite_B051	x	0	0.37	6.00 r	655270.93	4769488.80
On-Site Buildings	OnSite_B052	x	0	0.37	6.00 r	655259.76	4769479.07
	OnSite_B053	x	0	0.37	6.00 r	655248.39	4769468.98
On-Site Buildings			0	0.37	6.00 r	655237.12	4769459.14
On-Site Buildings	OnSite_B054	x					
On-Site Buildings On-Site Buildings	OnSite_B055	x	0	0.37	6.00 r	655226.84	4769447.93
On-Site Buildings					6.00 r 6.00 r 6.00 r	655226.84 655217.30 655207.21	4769447.93 4769436.28 4769425.31

Name	M.	ID	RB	Residents	Absorption	Height	Coord	linates
	_		_			Begin	×	У
On-Site Buildings	_	OnSite B059	x	0	0.37	(m) 6.00	(m) r 655178.69	(m) 4769403.24
On-Site Buildings	-	OnSite B060	X	0	0.37	6.00		
On-Site Buildings		OnSite B061	x	0	0.37	6.00		
On-Site Buildings	+	OnSite_B062	x	0	0.37	6.00		
On-Site Buildings		OnSite_B063	x	0	0.37	6.00	r 655131.31	4769366.35
On-Site Buildings		OnSite_B064	x	0	0.37	6.00		
On-Site Buildings		OnSite_B065	x	0	0.37	6.00		
On-Site Buildings	_	OnSite_B066	X	0	0.37	6.00		4769434.20
On-Site Buildings	_	OnSite_B067	X	0	0.37	6.00		
On-Site Buildings On-Site Buildings	-	OnSite_B068 OnSite B069	x	0	0.37	6.00 6.00		
On-Site Buildings	-	OnSite B070	X	0	0.37	6.00		
On-Site Buildings	+	OnSite B071	x	0	0.37	6.00		
On-Site Buildings	-	OnSite B072	x	0	0.37	6.00		
On-Site Buildings	+	OnSite B073	x	0	0.37	6.00		
On-Site Buildings		OnSite B074	x	0	0.37	6.00		
On-Site Buildings		OnSite_B075	x	0	0.37	6.00	r 655369.76	4769386.35
On-Site Buildings		OnSite_B076	x	0	0.37	6.00	r 655358.57	4769376.56
On-Site Buildings		OnSite_B077	x	0	0.37	6.00		
On-Site Buildings		OnSite_B078	X	0	0.37	6.00		
On-Site Buildings		OnSite_B079	X	0	0.37	6.00		
On-Site Buildings	_	OnSite_B080	x	0	0.37	6.00		
On-Site Buildings	+-	OnSite_B081	X	0	0.37	6.00		
On-Site Buildings On-Site Buildings	+	OnSite_B082 OnSite B083	x	0	0.37	6.00 6.00		
On-Site Buildings	+	OnSite_B083 OnSite_B084	x	0	0.37	6.00		
On-Site Buildings	+	OnSite B085	X	0	0.37	6.00		
On-Site Buildings	-	OnSite B086	x	0	0.37	6.00		
On-Site Buildings		OnSite B087	x	0	0.37	6.00		
On-Site Buildings		OnSite_B088	x	0	0.37	6.00		
On-Site Buildings		OnSite_B089	x	0	0.37	6.00		
On-Site Buildings		OnSite_B090	x	0	0.37	6.00		
On-Site Buildings		OnSite_B091	x	0	0.37	6.00		
On-Site Buildings		OnSite_B092	x	0	0.37	6.00		
On-Site Buildings	_	OnSite_B093	X	0	0.37	6.00		
On-Site Buildings	_	OnSite_B094	X	0	0.37	6.00		
On-Site Buildings	+	OnSite_B095 OnSite B096	X	0	0.37	6.00 6.00		
On-Site Buildings On-Site Buildings	_	OnSite B096	x	0	0.37	6.00		
On-Site Buildings	-	OnSite B098	x	0	0.37	6.00		
On-Site Buildings	-	OnSite B099	x	0	0.37	6.00		
On-Site Buildings		OnSite B100	x	0	0.37	6.00		
On-Site Buildings		OnSite_B101	x	0	0.37	6.00		
On-Site Buildings		OnSite_B102	x	0	0.37	6.00	r 655148.43	4769299.92
On-Site Buildings		OnSite_B103	x	0	0.37	6.00		4769288.65
On-Site Buildings		OnSite_B104	x	0	0.37	6.00		
On-Site Buildings		OnSite_B105	X	0	0.37	6.00		
On-Site Buildings	_	OnSite_B106	x	0	0.37	6.00		
On-Site Buildings On-Site Buildings	_	OnSite_B107	x	0	0.37	6.00 6.00		
On-Site Buildings		OnSite_B108 OnSite B109	X	0	0.37	6.00		
On-Site Buildings	-	OnSite B110	x	0	0.37	6.00		4768902.95
On-Site Buildings		OnSite B111	x	0	0.37	6.00		
On-Site Buildings	+	OnSite B112	x	0	0.37	6.00		
On-Site Buildings		OnSite B113	x	0	0.37	6.00		4768932.65
On-Site Buildings		OnSite_B114	x	0	0.37	6.00		
On-Site Buildings		OnSite_B115	x	0	0.37	6.00	r 654796.30	4768952.45
On-Site Buildings		OnSite_B116	x	0	0.37	6.00		4768962.35
On-Site Buildings		OnSite_B117	x	0	0.37	6.00		
On-Site Buildings		OnSite_B118	x	0	0.37	6.00		
On-Site Buildings	_	OnSite_B119	X	0	0.37	6.00		
On-Site Buildings On-Site Buildings		OnSite_B120	x	0	0.37	6.00 6.00		
On-Site Buildings	+	OnSite_B121 OnSite B122	x	0	0.37	6.00		
On-Site Buildings	+	OnSite_B122 OnSite_B123	x	0	0.37	6.00		
On-Site Buildings	+	OnSite_B124	x	0	0.37	6.00		
On-Site Buildings	1	OnSite B125	x	0	0.37	6.00		
On-Site Buildings	1	OnSite_B126	x	0	0.37	6.00		
On-Site Buildings		OnSite_B127	x	0	0.37	6.00		
On-Site Buildings		OnSite_B128	x	0	0.37	6.00		
On-Site Buildings		OnSite_B129	x	0	0.37	6.00		
On-Site Buildings		OnSite_B130	x	0	0.37	6.00		
On-Site Buildings	_	OnSite_B131	x	0	0.37	6.00		
On-Site Buildings	_	OnSite_B132	X	0	0.37	6.00		
On-Site Buildings		OnSite_B133	X	0	0.37	6.00		
On-Site Buildings On-Site Buildings	+	OnSite_B134 OnSite B135	x	0	0.37	6.00 6.00		
On-Site Buildings	-	OnSite B136	X	0	0.37	6.00		
On-Site Buildings	+	OnSite B137	X	0	0.37	6.00		
On-Site Buildings		OnSite B138	x	0	0.37	6.00		
	+	OnSite B139	x	0	0.37	6.00		
On-Site Buildings								
On-Site Buildings	+	OnSite_B140	x	0	0.37	6.00	r 654751.57	4768841.97
	+		x x	0	0.37	6.00 6.00		

Name	М.	ID	RB	Residents	Absorption	Height		linates
						Begin	X	у
On-Site Buildings	_	OnSite B143		0	0.37	(m) 6.00 r	(m) 654785.43	(m) 4768871.61
On-Site Buildings		OnSite B143	x	0	0.37	6.00 r	654796.72	4768881.49
On-Site Buildings		OnSite B145	x	0	0.37	6.00 r	654808.00	
On-Site Buildings		OnSite B146	x	0	0.37	6.00 r	654819.29	
On-Site Buildings		OnSite B147	x	0	0.37	6.00 r	654830.57	4768911.13
On-Site Buildings		OnSite B148	x	0	0.37	6.00 r	654703.47	4768921.04
On-Site Buildings		OnSite B149	x	0	0.37	6.00 r	654714.76	4768930.92
On-Site Buildings		OnSite_B150	x	0	0.37	6.00 r	654726.05	4768940.80
On-Site Buildings		OnSite_B151	x	0	0.37	6.00 r	654737.33	4768950.68
On-Site Buildings		OnSite_B152	x	0	0.37	6.00 r	654748.62	4768960.56
On-Site Buildings		OnSite_B153	х	0	0.37	6.00 r	654759.90	
On-Site Buildings		OnSite_B154	x	0	0.37	6.00 r	654771.19	
On-Site Buildings		OnSite_B155	x	0	0.37	6.00 r	654782.48	
On-Site Buildings		OnSite_B156	x	0	0.37	6.00 r	654793.76	
On-Site Buildings		OnSite_B157	x	0	0.37	6.00 r	654805.05	
On-Site Buildings		OnSite_B158	X	0	0.37	6.00 r	654816.34	
On-Site Buildings	_	OnSite_B159 OnSite B160	x	0	0.37	6.00 r 6.00 r	654828.01 654886.19	4769029.88 4769152.67
On-Site Buildings On-Site Buildings	-	OnSite B161	X	0	0.37	6.00 r	654897.46	
On-Site Buildings	-	OnSite B162	X	0	0.37	6.00 r	654908.73	
On-Site Buildings		OnSite B163	x	0	0.37	6.00 r	654920.00	
On-Site Buildings	-	OnSite B164	x	0	0.37	6.00 r	654931.26	
On-Site Buildings		OnSite B165	x	0	0.37	6.00 r	654942.53	
On-Site Buildings		OnSite B166	x	0	0.37	6.00 r	654953.80	
On-Site Buildings		OnSite B167	x	0	0.37	6.00 r	654965.07	4769221.97
On-Site Buildings		OnSite_B168	x	0	0.37	6.00 r	654976.34	
On-Site Buildings		OnSite_B169	X	0	0.37	6.00 r	654987.61	4769241.77
On-Site Buildings		OnSite_B170	x	0	0.37	6.00 r	654998.88	4769251.67
On-Site Buildings		OnSite_B171	x	0	0.37	6.00 r	655010.15	4769261.57
On-Site Buildings		OnSite_B172	x	0	0.37	6.00 r	655021.42	
On-Site Buildings		OnSite_B173	x	0	0.37	6.00 r	655032.69	
On-Site Buildings		OnSite_B174	x	0	0.37	6.00 r	655043.95	
On-Site Buildings		OnSite_B175	x	0	0.37	6.00 r	655055.22	
On-Site Buildings		OnSite_B176	x	0	0.37	6.00 r	655066.49	
On-Site Buildings	_	OnSite_B177	x	0	0.37	6.00 r	654656.45	4768950.12
On-Site Buildings		OnSite_B178	X	0	0.37	6.00 r	654667.71	4768960.04
On-Site Buildings On-Site Buildings	-	OnSite_B179 OnSite B180	x	0	0.37	6.00 r 6.00 r	654678.96 654690.21	4768969.96 4768979.88
On-Site Buildings		OnSite B181	x	0	0.37	6.00 r	654701.46	
On-Site Buildings		OnSite B182	X	0	0.37	6.00 r	654712.71	4768999.72
On-Site Buildings		OnSite B183	x	0	0.37	6.00 r	654723.96	
On-Site Buildings		OnSite B184	x	0	0.37	6.00 r	654735.22	
On-Site Buildings		OnSite B185	x	0	0.37	6.00 r	654746.47	4769029.48
On-Site Buildings		OnSite B186	x	0	0.37	6.00 r	654757.72	
On-Site Buildings		OnSite B187	x	0	0.37	6.00 r	654768.97	4769049.31
On-Site Buildings		OnSite B188	x	0	0.37	6.00 r	654780.22	4769059.23
On-Site Buildings		OnSite_B189	x	0	0.37	6.00 r	654791.47	4769069.15
On-Site Buildings		OnSite_B190	x	0	0.37	6.00 r	654802.73	4769079.07
On-Site Buildings		OnSite_B191	x	0	0.37	6.00 r	654818.72	4769092.93
On-Site Buildings		OnSite_B192	х	0	0.37	6.00 r	654829.97	4769102.84
On-Site Buildings		OnSite_B193	x	0	0.37	6.00 r	654841.23	
On-Site Buildings		OnSite_B194	x	0	0.37	6.00 r		4769122.68
On-Site Buildings		OnSite_B195	x	0	0.37	6.00 r	655062.50	
On-Site Buildings		OnSite_B196	x	0	0.37	6.00 r	655063.22	4769664.18
On-Site Buildings		OnSite_B197	x	0	0.37	6.00 r	655065.94	
On-Site Buildings		OnSite_B198	x	0	0.37	6.00 r	655069.77	4769696.28
On-Site Buildings		OnSite_B199	x	0	0.37	6.00 r	655075.61	4769711.16
On-Site Buildings		OnSite_B200	X	0	0.37	6.00 r	655083.13	
On-Site Buildings On-Site Buildings		OnSite_B201 OnSite B202	x	0	0.37	6.00 r 6.00 r	655090.27 655097.40	4769738.58 4769751.78
On-Site Buildings	+	OnSite_B202 OnSite B203	x	0	0.37	6.00 r	655104.53	
On-Site Buildings		OnSite B203	x	0	0.37	6.00 r	655104.53	4769764.97
On-Site Buildings	+	OnSite B205	X	0	0.37	6.00 r	655118.80	
On-Site Buildings		OnSite B206	x	0	0.37	6.00 r	655126.07	4769805.20
On-Site Buildings		OnSite B207	x	0	0.37	6.00 r	655135.18	
On-Site Buildings		OnSite B208	x	0	0.37	6.00 r	655144.43	
On-Site Buildings		OnSite_B209	x	0	0.37	6.00 r	655154.44	
On-Site Buildings		OnSite_B210	x	0	0.37	6.00 r	654858.40	
On-Site Buildings		OnSite_B211	x	0	0.37	6.00 r	654869.67	4769066.16
On-Site Buildings		OnSite_B212	x	0	0.37	6.00 r	654880.94	
On-Site Buildings		OnSite_B213	x	0	0.37	6.00 r	654892.21	4769085.96
On-Site Buildings		OnSite_B214	x	0	0.37	6.00 r	654903.48	
On-Site Buildings		OnSite_B215	x	0	0.37	6.00 r	654914.75	
On-Site Buildings		OnSite_B216	x	0	0.37	6.00 r	654926.01	4769115.66
On-Site Buildings		OnSite_B217	x	0	0.37	6.00 r	654937.28	
On-Site Buildings		OnSite_B218	x	0	0.37	6.00 r	654948.55	
On-Site Buildings		OnSite_B219	X	0	0.37	6.00 r	654959.82	
On-Site Buildings	-	OnSite_B220	X	0	0.37	6.00 r	654971.09	
On-Site Buildings		OnSite_B221	x	0	0.37	6.00 r	654982.36	
On-Site Buildings		OnSite_B222	x	0	0.37	6.00 r	654993.63	
	1	OnSite_B223	X		0.37	6.00 r	655023.56	
On-Site Buildings		OnSite P224	- I I	~	0 0 7 1	6 001-1	655034 00	1760014 401
On-Site Buildings On-Site Buildings On-Site Buildings		OnSite_B224 OnSite B225	x	0	0.37	6.00 r 6.00 r	655034.83 655046.10	

Name	M.	ID	RB	Residents	Absorption	Height	Coord	inates
						Begin	х	У
						(m)	(m)	(m)
On-Site Buildings		OnSite_B227	x	0	0.37	6.00 r	655068.64	4769240.86
On-Site Buildings		OnSite_B228	x	0	0.37	6.00 r	655079.78	4769250.58
On-Site Buildings		OnSite_B229	x	0	0.37	6.00 r	655090.93	4769260.17
On-Site Buildings		OnSite_B230	x	0	0.37	6.00 r	655102.72	4769270.28
On-Site Buildings		OnSite_B231	x	0	0.37	6.00 r	655165.72	4769855.65
On-Site Buildings		OnSite_B232	x	0	0.37	6.00 r	655180.74	4769865.49
On-Site Buildings		OnSite_B233	x	0	0.37	6.00 r	654863.73	4769132.60
On-Site Buildings		OnSite_B234	x	0	0.37	11.00 r	655272.31	4769769.79
On-Site Buildings		OnSite_B235	x	0	0.37	11.00 r	655306.43	4769800.97
On-Site Buildings		OnSite_B236	x	0	0.37	11.00 r	655153.07	4769655.36
On-Site Buildings		OnSite_B237	x	0	0.37	11.00 r	655185.78	4769730.55
On-Site Buildings		OnSite_B238	x	0	0.37	11.00 r	655168.50	4769694.34
On-Site Buildings		OnSite_B239	x	0	0.37	11.00 r	655204.44	4769766.32
On-Site Buildings		OnSite_B240	x	0	0.37	6.00 r	655186.76	4769797.53
On-Site Buildings		OnSite_B241	x	0	0.37	6.00 r	655177.96	4769784.79
On-Site Buildings		OnSite_B242	x	0	0.37	6.00 r	655169.62	4769771.11
On-Site Buildings		OnSite_B243	x	0	0.37	6.00 r	655162.07	4769757.97
On-Site Buildings		OnSite_B244	x	0	0.37	6.00 r	655155.38	4769744.50
On-Site Buildings		OnSite_B245	x	0	0.37	6.00 r	655148.51	4769731.15
On-Site Buildings		OnSite_B246	x	0	0.37	6.00 r	655141.81	4769717.84
On-Site Buildings		OnSite_B247	x	0	0.37	6.00 r	655134.87	4769704.28
On-Site Buildings		OnSite_B248	x	0	0.37	6.00 r	655128.26	4769690.47
On-Site Buildings		OnSite_B249	x	0	0.37	6.00 r	655122.55	4769674.91
On-Site Buildings		OnSite_B250	x	0	0.37	6.00 r	655119.83	4769658.32
On-Site Buildings		OnSite_B251	x	0	0.37	6.00 r		4769641.65
On-Site Buildings		OnSite_B252	x	0	0.37	6.00 r	655236.66	4769817.42
On-Site Buildings		OnSite_B253	x	0	0.37	6.00 r	655225.35	4769827.51
On-Site Buildings		OnSite_B254	x	0	0.37	6.00 r		4769807.03
On-Site Buildings		OnSite_B255	x	0	0.37	6.00 r	655270.29	4769829.83
On-Site Buildings		OnSite_B256	x	0	0.37	6.00 r	655260.28	
On-Site Buildings		OnSite_B257	x	0	0.37	6.00 r	655195.44	
On-Site Buildings		OnSite_B258	x	0	0.37	6.00 r	655210.46	4769877.09
On-Site Buildings		OnSite_B259	x	0	0.37	6.00 r	655225.11	
On-Site Buildings		OnSite_B260	x	0	0.37	6.00 r	655239.41	4769884.83
On-Site Buildings		OnSite_B261	х	0	0.37	6.00 r	655253.92	4769888.84
On-Site Buildings		OnSite_B262	x	0	0.37	6.00 r	655291.11	4769887.21
On-Site Buildings		OnSite_B263	x	0	0.37	6.00 r	655305.15	4769876.05
On-Site Buildings		OnSite_B264	x	0	0.37	6.00 r	655315.86	4769863.53
On-Site Buildings		OnSite_B265	x	0	0.37	6.00 r	655270.77	4769891.69
On-Site Buildings		OnSite_B266	х	0	0.37	6.00 r	655018.73	4769644.79
On-Site Buildings		OnSite_B267	x	0	0.37	6.00 r	655036.69	4769645.60

Ground Absorption Area(s)

Name	M.	ID	G
Chemtrade			0.0
Salit			0.5
Grass			1.0
PSW			1.0
Park			1.0

Road(s)

Name	M.	ID		Lme		Cour	nt Data		e	kact Cou	nt Data	1		Speed Limit	SCS	Surf	ace	Gradient	Mult	. Reflec	tion Heigh
			Day	Evening	Night	DTV	Str.class.		М			p (%)		Auto Truck	Dist.	Dstro	Туре		Drefl	Hbuild	Dist.
			(dBA)	(dBA)	(dBA)			Day	Evening	Night	Day	Evening	Night	(km/h) (km/h))	(dB)		(%)	(dB)	(m)	(m) (m)
McLeod Rd Drummond Rd	~	!03!2031_S00	62.7	-6.6	56.2			1093.5	0.0	243.0	2.1	0.0	2.1	50	RQ 16	0.0	1	0.0	0.0		0.0 r
Marineland Pkway_Drummond Rd_Stanley Ave/Thundering Waters	~	!03!2031_S01	62.1	-6.6	55.6			841.5	0.0	187.0	2.9	0.0	2.9	50	RQ 16	0.0	1	0.0	0.0		0.0 r
Marineland Pkway_Stanley Ave/Thundering Waters_Stanley Ave S	~	!03!2031_S02	63.3	-6.6	56.7			1071.6	0.0	238.1	3.1	0.0	3.1	50	RQ 16	0.0	1	0.0	0.0		0.0 r
Marineland Pkway_Stanley Ave S_	~	!03!2031_S03	62.3	-6.6	55.7			628.9	0.0	139.7	5.8	0.0	5.8	50	RQ 16	0.0	1	0.0	0.0		0.0 r
Drummond Rd N	~	!03!2031_S04	60.2	-6.6	53.6			729.6	0.0	162.1	0.9	0.0	0.9	50	RQ 12	0.0	1	0.0	0.0		0.0 r
Drummond Rd S	~	!03!2031_S05	60.1	-6.6	53.6			689.1	0.0	153.1	1.2	0.0	1.2	50	RQ 12	0.0	1	0.0	0.0		0.0 r
Stanley Ave N	~	!03!2031_S06	60.5	-6.6	54.0			487.7	0.0	108.4	4.3	0.0	4.3	50	RQ 16	0.0	1	0.0	0.0		0.0 r
Thundering Waters Blvd	~	!03!2031_S07	-4.6	-6.6	-4.6			0.0	0.0	0.0	6.3	0.0		50	RQ 12	0.0	1	0.0	0.0		0.0 r
Stanley Ave S_Marineland Pkway_Ramsey Rd	~	!03!2031_S08	61.8	-5.2	55.2			508.5	0.0	113.0	4.1	0.0	4.1	60	RQ 12	0.0	1	0.0	0.0		0.0 r
Stanley Ave S_Ramsey Rd_Progress St	~	!03!2031_S09	61.7	-5.2	55.2			544.5	0.0	121.0	3.5	0.0	3.5	60	RQ 12	0.0	1	0.0	0.0		0.0 r
Stanley Ave S_Progress St_Don Murie St	~	!03!2031_S10	61.3	-5.2	54.7			520.3	0.0	115.6	3.0	0.0	3.0	60	RQ 12	0.0	1	0.0	0.0		0.0 r
Stanley Ave S_Don Murie St_Chippawa Pkway	~	!03!2031_S11	63.3	-5.2	56.8			572.6	0.0	127.2	6.7	0.0	6.7	60	RQ 12	0.0	1	0.0	0.0		0.0 r
Stanley Ave S_Chippawa Pkway_Lyons Creek	~	!03!2031_S12	63.6	-5.2	57.0			699.8	0.0	155.5	5.1	0.0	5.1	60	RQ 12	0.0	1	0.0	0.0		0.0 r
Ramsey Rd	~	!03!2031_S13	54.8	-6.6	48.3			88.9	0.0	19.7	8.7	0.0	8.7	50	RQ 12	0.0	1	0.0	0.0		0.0 r
Progress St	~	!03!2031_S14	52.0	-6.6	45.5			77.6	0.0	17.2	3.3	0.0	3.3	50	RQ 12	0.0	1	0.0	0.0		0.0 r
Don Murie St	~	!03!2031_S15	56.6	-6.6	50.1			109.1	0.0	24.2	11.7	0.0	11.7	50	RQ 12	0.0	1	0.0	0.0		0.0 r
Chippawa Pkway W	~	!03!2031_S16	62.0	-5.2	55.5			650.3	0.0	144.5	2.6	0.0	2.6	60	RQ 12	0.0	1	0.0	0.0		0.0 r
Chippawa Pkway E	~	!03!2031_S17	49.9	-5.2	43.4			41.1	0.0	9.1	2.4	0.0	2.4	60	RQ 12	0.0	1	0.0	0.0		0.0 r
Lyons Creek W	~	!03!2031_S18	65.2	-3.9	58.6			875.3	0.0	194.5	3.9	0.0	3.9	70	RQ 12	0.0	1	0.0	0.0		0.0 r
Lyons Creek E	~	!03!2031_S19	59.9	-5.2	53.3			387.6	0.0	86.1	2.8	0.0	2.8	60	RQ 12	0.0	1	0.0	0.0		0.0 r
RR 49_REG. RD. 98 (Montrose Rd.)_Oakwood Drive	~	10312031 S20	69.7	-6.6	63.2			2069.5	0.0	459.9	13.0	0.0	13.0	50	RQ 16	0.0	1	0.0	0.0		0.0 r

Name	M.	ID		Lme		Cou	nt Data		e	kact Cou	nt Data			Speed	l Limit	SCS	Surf	ace	Gradient	Mult	. Reflec	tion F	leight
			Day	Evening	Night	DTV	Str.class.		М			p (%)		Auto	Truck	Dist.	Dstro	Туре		Drefl	Hbuild	Dist.	
			(dBA)	(dBA)	(dBA)			Day	Evening	Night	Day	Evening	Night	(km/h)	(km/h)		(dB)		(%)	(dB)	(m)	(m) ((m)
RR 49_Oakwood Drive_Dorchester Road	~	!03!2031_S21	69.3	-6.6	62.8			1884.1	0.0	418.7	13.0	0.0	13.0	50		RQ 16	0.0	1	0.0	0.0		0).0 r
RR 63_REG. RD. 70 (Thorold Townline Rd.)_REG. RD. 98 (Montrose Rd.)	~	!03!2031_S22	60.9	-2.5	54.4			139.0	0.0	30.9	13.0	0.0	13.0	80		RQ 12	0.0	1	0.0	0.0		0).0 r
RR 98_REG. RD. 20 (Lundy's Lane)_McLeod Road	~	!03!2031_S23	64.9	-6.6	58.4			687.3	0.0	152.7	13.0	0.0	13.0	50		RQ 16	0.0	1	0.0	0.0		0).0 r
RR 98_McLeod Road_Canadian Drive	~	!03!2031_S24	61.9	-6.6	55.4			339.8	0.0	75.5	13.0	0.0	13.0	50		RQ 16	0.0	1	0.0	0.0		0).0 r
RR 98_Canadian Drive_REG. RD. 63 (Chippawa Creek Rd.)	~	!03!2031_S25	64.2	-5.2	57.6			447.9	0.0	99.5	13.0	0.0	13.0	60		RQ 16	0.0	1	0.0	0.0		0).0 r
RR 98_REG. RD. 63 (Chippawa Creek Rd.)_REG. RD. 47 (Lyons Creek Rd.)	~	!03!2031_S26	66.3	-2.5	59.8			478.8	0.0	106.4	13.0	0.0	13.0	80		RQ 16	0.0	1	0.0	0.0		0).0 r
QEW_McLeod Road_Lyons Creek	~	!03!2031_S27	74.6	-0.1	70.1			2624.0	0.0	926.1	13.0	0.0	13.0	100		RQ 20	0.0	1	0.0	0.0		0).0 r
Drummond Rd Extension_Oldfield Rd_Street F/C	~	!03!2031_S28	55.5	-6.6	49.0			242.4	0.0	53.9	1.2	0.0	1.2	50		RQ 12	0.0	1	0.0	0.0		0).0 r
Drummond Rd Extension_Street F/C_Ramsey Rd	~	!03!2031_S29	47.3	-6.6	40.8			36.6	0.0	8.1	1.2	0.0	1.2	50		RQ 12	0.0	1	0.0	0.0		0).0 r
Ramsey Rd_Drummond Rd_Oldfield Rd Extension	~	!03!2031_S30	53.5	-6.6	47.0			65.8	0.0	14.6	8.7	0.0	8.7	50		RQ 12	0.0	1	0.0	0.0		0).0 r
Street F	~	!03!2031_S31	52.8	-6.6	46.2			127.7	0.0	28.4	1.2	0.0	1.2	50		RQ 12	0.0	1	0.0	0.0		0).0 r
Street C	~	!03!2031_S32	50.0	-6.6	43.4			66.9	0.0	14.9	1.2	0.0	1.2	50		RQ 12	0.0	1	0.0	0.0		0).0 r
Oldfield Rd Extension_Drummond Rd_Oldfield Rd Extension	~	!03!2031_S33	52.2	-6.6	45.7			113.1	0.0	25.1	1.2	0.0	1.2	50		RQ 12	0.0	1	0.0	0.0		0).0 r
Oldfield Rd Extension_Oldfield Rd Extension_Ramsey Rd	~	!03!2031_S34	45.3	-6.6	38.8			23.1	0.0	5.1	1.2	0.0	1.2	50		RQ 12	0.0	1	0.0	0.0		0).0 r

Rail Line(s)

Name	M.	ID	Lm	ı,E	Train Class		Add.	Level		Vmax
			Day	Night		Dfb	Dbr	Dbü	Dra	
			(dBA)	(dBA)		(dB)	(dB)	(dB)	(dB)	(km/h)
Train Pass by (2028)	~	1051ORWN_TRACK00020	51.9	57.9	Train 2028 Pass by	0.0	0.0	0.0	0.0	

Rail Line(s) Type

Name	M.	ID	Ln	ı,E		Train Class												Vmax			
			Day	Night	Тур	e	р	Nur	mber of T	rains	v	1	Dfz	Dae	Lm,E,	i (dB)	Dfb	Dbr	Dbü	Dra	
			(dBA)	(dBA)			(%)	Day	Evening	Night	(km/h)	(m)	(dB)	(dB)	Day	Night	(dB)	(dB)	(dB)	(dB)	(km/h)
Train Pass by (2028)	~	1051ORWN_TRACK00020	51.9	57.9	FRA_CONV_	FRE_LOC	0.0	2	0	4	40	23	0.0	0.0	34.6	40.6	0.0	0.0	0.0	0.0	
					FRA_CONV_	FRE_CAR	0.0	20	0	40	40	29	0.0	0.0	45.6	51.6					

Number of Train(s)

Name	Lm	ı,E					Train (Class						
	Day	Night	Туре		р	Nur	nber of T	rains	v	Ι	Dfz	Dae	Lm,E,	i (dB)
	(dBA)	(dBA)			(%)	Day	Evening	Night	(km/h)	(m)	(dB)	(dB)	Day	Night
Train 2018 Pass by	60.6	63.7	FRA_CONV_FRE_LO	oc	0.0	4	0	4	64	23	0.0	0.0	41.7	44.7
			FRA_CONV_FRE_C	AR	0.0	108	0	108	64	29	0.0	0.0	57.0	60.0
Train 2028 Pass by	51.9	57.9	FRA_CONV_FRE_L	OC	0.0	2	0	4	40	23	0.0	0.0	34.6	40.6
			FRA_CONV_FRE_C	AR	0.0	20	0	40	40	29	0.0	0.0	45.6	51.6
Train Chemtrade	49.6	52.6	FRA_CONV_FRE_L	oc	0.0	1	0	1	20	23	0.0	0.0	25.6	28.6
			FRA_CONV_FRE_C	AR	0.0	7	0	7	20	13	0.0	0.0	31.6	34.6
Train 2028 Horn	66.4	69.4	FRA_HORN		0.0	1	0	1	64	0	0.0	0.0	0.0	0.0

Rail Line(s) Geometry

Name	F	lei	ght	Coordinates										
	Begin		End	х	у	z	Ground							
	(m)		(m)	(m)	(m)	(m)	(m)							
Train Pass by (2028)	0.00	r		651834.29	4766511.88	178.00	178.00							
				652630.76	4767211.73	176.00	176.00							
				652721.76	4767289.74	176.00	176.00							
				652769.75	4767333.74	176.00	176.00							
				652935.75	4767477.73	176.00	176.00							
				653044.57	4767576.45	176.00	176.00							
				653197.42	4767705.61	176.00	176.00							
				653451.76	4767931.75	176.00	176.00							
				653565.48	4768026.98	178.30	178.30							
				654703.94	4769025.72	181.88	181.88							
				655567.94	4769784.82	184.00	184.00							
				655962.77	4770133.71	185.00	185.00							
				656039.74	4770205.30	186.00	186.00							
				656068.59	4770237.87	180.94	180.94							
				656110.77	4770295.71	186.00	186.00							
				656133.77	4770334.71	186.00	186.00							
				656151.77	4770370.71	186.70	186.70							
				656177.77	4770435.71	186.92	186.92							
				656190.77	4770481.71	187.00	187.00							
				656205.77	4770560.71	186.00	186.00							
				656211.77	4770617.71	186.37	186.37							
				656212.77	4770649.72	187.01	187.01							
				656211.77	4770710.72	187.87	187.87							
				656196.59	4770862.38	188.00	188.00							
				656184.60	4770950.28	187.57	187.57							
				656167.62	4771109.18	187.63	187.63							
				656184.60	4770950.28	187.57	187.57							
				656196.59	4770862.38	188.00	188.00							
				656211.77	4770710.72	187.87	187.87							

Name	He	ight		Coordinat	es	
	Begin	End	х	У	z	Ground
	(m)	(m)	(m)	(m)	(m)	(m)
			656212.77	4770649.72	187.01	187.01
			656211.77	4770617.71	186.37	186.37
			656205.77	4770560.71	186.00	186.00
			656190.77	4770481.71	187.00	187.00
			656177.77	4770435.71	186.92	186.92
			656151.77	4770370.71	186.70	186.70
			656133.77	4770334.71	186.00	186.00
			656110.77	4770295.71	186.00	186.00
			656068.59	4770237.87	180.94	180.94
			656039.74	4770205.30	186.00	186.00
			655962.77	4770133.71	185.00	185.00
			655567.94	4769784.82	184.00	184.00
			654703.94	4769025.72	181.88	181.88
			653565.48	4768026.98	178.30	178.30
			653451.76	4767931.75	176.00	176.00
			653197.42	4767705.61	176.00	176.00
			653044.57	4767576.45	176.00	176.00
			652935.75	4767477.73	176.00	176.00
			652769.75	4767333.74	176.00	176.00
			652721.76	4767289.74	176.00	176.00
			652630.76	4767211.73	176.00	176.00
			651834.29	4766511.88	178.00	178.00

RESULTS

golder.com